×

Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions. (English) Zbl 1327.35002

Summary: The Moser-Trudinger embedding has been generalized by Adimurthi and K. Sandeep [NoDEA, Nonlinear Differ. Equ. Appl. 13, No. 5–6, 585–603 (2007; Zbl 1171.35367)] to the following weighted version: if \(\Omega \subset \mathbb R^2\) is bounded, \(\alpha >0\) and \(\beta \in [0,2)\) are such that \[ \frac{\alpha }{4\pi }+\frac{\beta }{2}\leq 1, \] then \[ \sup_{\begin{aligned} v\in W^{1,2}_0(\Omega ) \\ \| \nabla v\| _{L^2}\leq 1 \end{aligned}}\int_\Omega\frac{e^{\alpha v^2}-1}{| x|^\beta}\leq C. \] We prove that the supremum is attained, generalizing a well-known result by M. Flucher [Comment. Math. Helv. 67, No. 3, 471–497 (1992; Zbl 0763.58008)], who has proved the case \(\beta =0\).

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)

References:

[1] Adimurthi, A., Sandeep, K.: A singular Moser-Trudinger embedding and its applications. Nonlinear. Differ. Equ. Appl. 13(5-6), 585-603 (2007) · Zbl 1171.35367 · doi:10.1007/s00030-006-4025-9
[2] Adimurthi, A., Tintarev, C.: On compactness in the Trudinger-Moser inequality. Ann. Sc Norm. Super. Pisa. Cl. Sci. A. 5(13), 399-416 (2014) · Zbl 1301.46011
[3] Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory, Second edition, Graduate Texts in Mathematics, 137. Springer, New York (2001) · Zbl 0959.31001 · doi:10.1007/978-1-4757-8137-3
[4] Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality. J. Moser. Bull. Sci. Math. 110, 113-127 (1986) · Zbl 0619.58013
[5] Csató G.: An isoperimetric problem with density and the Hardy Sobolev inequality in \[\mathbb{R}^2\] R2, Differential Intergral Equations, to appear · Zbl 1363.49040
[6] Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helvetici. 67, 471-497 (1992) · Zbl 0763.58008 · doi:10.1007/BF02566514
[7] Flucher M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Ph.D. thesis, ETH Zürich (1991) · Zbl 0763.58008
[8] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Springer, Berlin (2001) (Reprint of the 1998 edition) · Zbl 1042.35002
[9] Kesavan S.: Symmetrization and applications, Series in Analysis, 3. World Scientific Publishing Co., Pte. Ltd., Hackensack, (2006) · Zbl 1110.35002
[10] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. Limit. case. I. Rev. Mat. Iberoamericana. 1(1), 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[11] Malchiodi, A., Martinazzi, L.: Critical points of the Moser-Trudinger functional on a disk. J. Eur. Math. Soc. 16(5), 893-908 (2014) · Zbl 1304.49011 · doi:10.4171/JEMS/450
[12] Mancini, G., Sandeep, K.: Moser-Trudinger inequality on conformal discs. Commun. Contemp. Math. 12(6), 1055-1068 (2010) · Zbl 1205.35067 · doi:10.1142/S0219199710004111
[13] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana. Univ. Math. J. 20(11), 1077-1092 (1971) · Zbl 0213.13001 · doi:10.1512/iumj.1971.20.20101
[14] Struwe, M.: Critical points of embeddings of \[H_0^{1, n}\] H01,n into Orlicz spaces. Ann. Inst. H. Poincaré. Anal. Non Linéaire 5(5), 425-464 (1988) · Zbl 0664.35022
[15] Trudinger, N.S.: On embeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473-484 (1967) · Zbl 0163.36402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.