×

Constrained MPC design of nonlinear Markov jump system with nonhomogeneous process. (English) Zbl 1326.93118

Summary: In this paper, a differential-inclusion-based MPC scheme is developed of the controller design for a discrete time nonlinear Markov jump system with nonhomogeneous transition probability. By adopting a differential-inclusion-based convex model predictive control mechanism, the nonlinear Markov jump system with nonhomogeneous transition probability is enclosed by a set of linear Markov jump systems. In this way, the controller design for the nonlinear Markov jump system can be solved via solving a set of linear Markov jump systems. Two numerical examples with different weighting parameters \(R\) are presented to illustrate the applicability of the results obtained.

MSC:

93E03 Stochastic systems in control theory (general)
93C55 Discrete-time control/observation systems
60J75 Jump processes (MSC2010)
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI

References:

[1] Krasovskii, N. M.; Lidskii, E. A., Analytical design of controllers in systems with random attributes, Autom. Remote Control, 22, 1, 1021-1025 (1961) · Zbl 0104.36704
[2] Dong, H.; Wang, Z.; Ho, D.; Gao, H., Robust \(H_\infty\) filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case, IEEE Trans. Signal Process., 59, 7, 3048-3057 (2011) · Zbl 1391.93234
[3] Shi, P.; Boukas, E. K.; Agarwal, R., Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters, IEEE Trans. Autom. Control, 44, 8, 1592-1597 (1999) · Zbl 0986.93066
[4] Shi, P.; Xia, Y.; Liu, G.; Rees, D., On designing of sliding mode control for stochastic jump systems, IEEE Trans. Autom. Control, 51, 1, 97-103 (2006) · Zbl 1366.93682
[5] Hu, L.; Shi, P.; Frank, P., Robust sampled-data control for Markovian jump linear systems, Automatica, 42, 11, 2025-2030 (2006) · Zbl 1112.93057
[6] Wu, L.; Shi, P.; Gao, H.; Wang, C., Robust H-infinity filtering for 2-D Markovian jump systems, Automatica, 44, 7, 1849-1858 (2008) · Zbl 1149.93346
[7] Fei, Z.; Gao, H.; Shi, P., New results on stabilization of Markovian jump systems with time delays, Automatica, 45, 10, 2300-2306 (2009) · Zbl 1179.93170
[8] Wang, J.; Wang, H.; Xue, A.; Lu, R., Delay-dependent \(H_\infty\) control for singular Markovian jump systems with time delay, Nonlinear Anal. Hybrid Syst., 8, 5, 1-12 (2013) · Zbl 1257.93032
[9] Yin, Y.; Shi, P.; Liu, F., Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems, IEEE Trans. Ind. Electron., 58, 10, 4908-4916 (2011)
[10] Yin, Y.; Shi, P.; Liu, F., Gain-scheduled PI tracking control on stochastic nonlinear systems with partially known transition probabilities, J. Franklin Inst., 348, 4, 685-702 (2011) · Zbl 1227.93127
[11] Zhang, L.; Boukas, E. K., Mode-dependent \(H_\infty\) filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 6, 1462-1467 (2009) · Zbl 1166.93378
[12] Zhang, L.; Boukas, E. K., \(H_\infty\) control for discrete-time markovian jump linear systems with partly unknown transition probabilities, Int. J. Robust Nonlinear Control, 19, 8, 868-883 (2009) · Zbl 1166.93320
[13] Zhang, L., \(H_\infty\) estimation of discrete-time piecewise homogeneous Markov jump linear systems, Automatica, 45, 11, 2570-2576 (2009) · Zbl 1180.93100
[14] Chen, L.; Leng, Y.; Guo, H.; Zhang, L., \(H_\infty\) control of a class of discrete-time Markov jump linear systems with piecewise-constant TP subject to average dwell time switching, J. Franklin Inst., 349, 6, 1989-2003 (2012) · Zbl 1300.93152
[15] Yin, Y.; Shi, P.; Liu, F.; Teo, K. L., Observer-based \(H_\infty\) on nonhomogeneous Markov jump systems with nonlinear input, Int. J. Robust Nonlinear Control (2013)
[17] Huang, J.; Shi, Y., \(H_\infty\) state-feedback control for Semi-Markov jump linear systems with time-varying delays, ASME Journal of Dynamic Systems, Measurement, and Control, 135, 4, 041012 (2013), 1-8
[18] Huang, J.; Shi, Y., Stochastic stability and robust stabilization of Semi-Markov jump linear systems, Int. J. Robust Nonlinear Control, 23, 2028-2043 (2013) · Zbl 1278.93286
[20] Huang, R.; Lina, Y.; Lin, Z., Sliding mode control design for uncertain nonlinear stochastic state-delayed Markovian jump systems with actuator failures, Nonlinear Anal. Hybrid Syst., 5, 4, 692-703 (2011) · Zbl 1227.93107
[21] He, S.; Liu, F., Finite-time H Fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback, IEEE Trans. Fuzzy Syst., 20, 4, 605-614 (2012)
[22] Luan, X.; Liu, F.; Shi, P., Robust finite-time \(H_\infty\) control for nonlinear jump systems via neural networks, Circuits Syst. Signal Process., 29, 3, 481-498 (2010) · Zbl 1191.93028
[23] Yin, Y.; Shi, P.; Liu, F., Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems, IEEE Trans. Ind. Electron., 58, 10, 4908-4916 (2011)
[24] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V., Constrained model predictive control: Stability and optimality, Automatica, 36, 6, 789-814 (2000) · Zbl 0949.93003
[25] Kothare, M. V.; Balakrishnan, V.; Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 10, 1361-1379 (1996) · Zbl 0897.93023
[26] Bemporad, A.; Morari, M.; Dua, V.; Pistikopoulos, E., The explicit linear quadratic regulator for constrained systems, Automatica, 38, 1, 3-20 (2002) · Zbl 0999.93018
[27] Al-Gherwi, W.; Budman, H.; Elkamel, A., A robust distributed model predictive control algorithm, J. Process Control, 21, 1127-1137 (2011)
[28] Müller, M. A.; Allgöwer, F., Improving performance in model predictive control: Switching cost functionals under average dwell-time, Automatica, 48, 2, 402-409 (2012) · Zbl 1260.93055
[29] Huang, H.; Li, D.; Lin, Z.; Xi, Y., An improved robust model predictive control design in the presence of actuator saturation, Automatica, 47, 4, 861-864 (2011) · Zbl 1215.93049
[30] Mayne, D.; Seron, M.; Rakovic, S., Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41, 210-224 (2005) · Zbl 1066.93015
[31] Mayne, D.; Rakovic, S.; Vinter, R.; Kerrigan, E., Characterization of the solution to a constrained \(H_\infty\) optimal control problem, Automatica, 42, 371-382 (2006) · Zbl 1124.49022
[32] Lu, Y.; Arkun, Y., Quasi-min-max MPC algorithms for LPV systems, Automatica, 36, 4, 527-540 (2000) · Zbl 0981.93027
[33] Lee, S. M.; Park, J. H.; Ji, D. H.; Won, S. C., Robust model predictive control for LPV systems using relaxation matrices, IET Control Theory Appl., 1, 6, 1567-1573 (2007)
[34] Allgower, F.; Badgwelz, T.; Qin, J.; Rawlings, J., Nonlinear predictive control and moving horizon estimation - an introductory overview, (Frank, P. M., Advances in Control-Highlights of ECC’99 (1999), Springer: Springer Berlin)
[35] Hermes, H.; Lasalle, J., (Functional Analysis and Time Optimal Control. Functional Analysis and Time Optimal Control, Mathematics in Science and Engineering, vol. 56 (1969), Academic press) · Zbl 0203.47504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.