×

SH-wave propagation in a continuously inhomogeneous half-plane with free-surface relief by BIEM. (English) Zbl 1326.74092

Summary: The anti-plane strain elastodynamic problem for a continuously inhomogeneous half-plane with free-surface relief subjected to time-harmonic SH-wave is studied. The computational tool is a boundary integral equation method (BIEM) based on analytically derived Green’s function for a quadratically inhomogeneous in depth half-plane. To show the versatility of the proposed BIE method, it is considered SH-wave propagation in an inhomogeneous half-plane with free surface relief presented by a semi-circle, semi-elliptic and triangle canyon. The inhomogeneous in depth half-plane is modeled in two different ways: (i) the material properties vary continuously in depth and BIEM based on Green’s function is used; (ii) the material properties vary in a discrete way and the half-plane is presented by a set of homogeneous layers with horizontal interfaces and a hybrid technique based on wave number integration method (WNIM) and BIEM is applied. The equivalence of these two different models is shown. The simulations reveal a marked dependence of the wave field on the material inhomogeneity and the potential of the BIEM based on the Green’s function for half-plane to produce highly accurate results by using strongly reduced discretization mesh in comparison with the conventional boundary element technique using fundamental solution for the full plane.

MSC:

74L10 Soil and rock mechanics
86A15 Seismology (including tsunami modeling), earthquakes
Full Text: DOI

References:

[1] H.K.Acharya, Field due to point source in an inhomogeneous elastic medium, J. Acoust. Soc. Am.50, 172-175 (1971). · Zbl 0218.73032
[2] R.Apsel and E.J.Luco, The Green’s functions for a layered half‐space, Part II, Bull. Seismol. Soc. Am73(4), 931-951 (1983).
[3] A.Ben‐Menahem, Diffraction of elastic waves from a surface source in a heteregeneous medium, Bull. Seismol. Soc. Am50(1), 15-33 (1960).
[4] M.Bouchon, Discrete wave number representation of elastic wave fields in three‐space dimensions, J. Geophys. Res.84, 3609-3614 (1979).
[5] M.Bouchon, A simple method to calculate Green’s function for elastic layered media, Bull. Seismol. Soc. Am.71, 959-971 (1981).
[6] C.A.Brebbia and J.Dominguez, Boundary Elements: An Introductory Course (Computational Mechanics Publications, Southampton, 1992). · Zbl 0780.73002
[7] S.K.Chakrabarty and T.K.De, On stresses and displacements due to a moving line load over the plane boundary of a heterogeneous elastic half‐space, Pure Appl. Geophys.85, 214-218 (1971).
[8] R.Courant and D.Hilbert, Methods of Mathematical Physics, Vol. II (Wiley, New York, 1962). · Zbl 0099.29504
[9] C.H.Daros, A fundamental solution for SH‐waves in a class of inhomogeneous anisotropic media, Int. J. Eng. Sci.46, 809-817 (2008). · Zbl 1213.74156
[10] C.H.Daros, Green’s finction for SH‐waves in inhomogeneous anisotropic elastic solid with power-function velocity variation, Wave Motion50, 101-110 (2013). · Zbl 1360.74064
[11] H.Deresiewicz, A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum, Bull. Seismol. Soc. Am.52, 639-645 (1962).
[12] J.Dominguez, Boundary Elements in Dynamics (Computational Mechanics Publications, Southampton, 1993). · Zbl 0790.73003
[13] E.Fazil and O.Murat, Diffusion problems in bonded nonhomogeneous materials with an interface cut, Int. J. Eng. Sci.30, 1507-1523 (1992). · Zbl 0769.73005
[14] L.Y.Fu and M.Bouchon, Discrete wavenumber solutions to numerical wave propagation in piecewise heterogeneous media. I. Theory of two‐dimensional SH case, Geophys. J. Int.157, 481-498 (2004).
[15] K.Fuchs and G.Müller, Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astron. Soc.23, 417-433 (1971).
[16] H.Fujiwara and H.Takenaka, Calculation of surface waves for a thin basin structure using a direct boundary element method with normal modes, Geophys. J. Int.117, 69-91 (1994).
[17] G.Gazetas, Static and dynamic displacements of foundations on heterogeneous multilayered soils, Geotechnique30, 159-177 (1980).
[18] G.Gazetas, Stresses and displacements in cross‐anisotropic soils, J. Geotech. Eng. Div. (ASCE)108, 532-553 (1982).
[19] Z.Ge, Simulation of the seismic response of sedimentary basins with constant‐gradient velocity along arbitrary direction using boundary element method: SH case, Earthq. Sci.23, 149-155 (2010).
[20] I.S.Gradshteyn and I.M.Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980). · Zbl 0521.33001
[21] B.B.Guzina and R.Y.S.Pak, Elastodynamic Green’s functions for a smoothly heterogeneous half‐space, Int. J. Solids Struct.33, 1005-1021 (1996). · Zbl 0900.73104
[22] D.Harkider and D.L.Anderson, Surface wave energy from point sources in plane layered Earth models, J. Geophys. Res.7(12), 2967-2980 (1966).
[23] D.V.Helmberger, The crust-mantle transition in the Bering sea, Bull. Seismol. Soc. Am.58, 179-214 (1968).
[24] H.Hirai, Analysis of transient response of SH‐wave scattering in a half‐space by the boundary element method, Eng. Anal.5(4), 189-194 (1988).
[25] Y.Hisada, An efficient method for computing Green’s functions for a layered half‐space with sources and receivers at close depths. Part 1, Bull. Seismol. Soc. Am.84(5), 1456-1472, (1994).
[26] Y.Hisada, An efficient method for computing Green’s functions for a layered half‐space with sources and receivers at close depths. Part 2, Bull. Seismol. Soc. Am.85(4), 1080-1093 (1995).
[27] Y.Hisada, K.Aki, and T.Teng, 3‐D simulations of surface wave propagation in the Kanto sedimentary basin, Japan, part 2: application of the surface wave BEM, Bull. Seismol. Soc. Am.83(6), 1700-1720 (1993).
[28] R.Holford, Elementary source‐type solutions of the reduced wave equation, J. Acoust. Soc. Am.70, 1427-1436 (1981). · Zbl 0478.35030
[29] J.F.Hook, Separation of the vector wave equation of elasticity for certain types of inhomogeneous, isotropic media, J. Acoust. Soc. Am.33, 302-313 (1961).
[30] J.F.Hook, Green’s functions for axially symmetric elastic waves in unbounded inhomogeneous media having constant velocity gradients, J. Appl. Mech. (ASME)29, 293-298 (1962). · Zbl 0107.41902
[31] J.A.Hudson, Love waves in a heterogeneous medium, Geophys. J. Int.6, 131-147 (1962).
[32] R.Kakar and S.Kakar, Propagation of love waves in a non-homogeneous elastic media, J. Acad. Ind. Res.1(6), 323-328 (2012).
[33] B.L.N.Kennett, Seismic Wave Propagation in Stratified Media (Cambridge University Press, Cambridge, 1983).
[34] R.Kind, The reflectivity method for a buried source, J. Geophys. Res.44, 603-612 (1978).
[35] S.Kobayashi, Some Problems of the Boundary Integral Equation Method in Elastodynamics. In: Boundary Elements V, edited by C. A. Brebbia, T. Futagami, and M. Tanaka (Springer‐Verlag, Berlin, 1983), pp. 775-784. · Zbl 0546.73068
[36] B.Kuvashinov and W.A.Mulder, The exact solution of the time‐harmonic wave equation for linear velocity profile, Geophys. J. Int.167, 659-662 (2006).
[37] K.L.Leung, I.G.Vardoulakis, D.E.Beskos, and J.L.Tassoulas, Vibration isolation by trenches in continuously nonhomogeneous soil by the BEM, Soil Dyn. Earthq. Eng.10, 172-179 (1991).
[38] E.J.Luco and R.Apsel, The Green’s functions for a layered half‐space, Part I, Bull. Seismol. Soc. Am.73(4), 909-929, (1983).
[39] F.Luzon, L.Ramirez, F.J.Sanchez‐Sesma, and A.Posadas, Propagation of SH elastic waves in deep sedimentary basins with an oblique velocity gradient, Wave Motion38, 11-23 (2003). · Zbl 1163.74399
[40] F.Luzon, L.Ramirez‐Guzman, F.J.Sanchez‐Sesma, and A.Posadas, Simulation of the seismic response of sedimentary basins with vertical constant‐gradient of velocity, Pure Appl. Geophys.12, 1533-1547 (2004).
[41] F.Luzon, F.J.Sanchez‐Sesma, A.Perez‐Ruiz, L.Ramirez‐Guzman, and A.Pech, In‐plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ration, Soil Dyn. Earthq. Eng.29, 994-1004 (2009).
[42] G.D.Manolis and D.E.Beskos, Boundary Element Methods in Elastodynamics (Unwin and Allen, London, 1987).
[43] G.D.Manolis and R.P.Shaw, Green’s function for a vector wave equation in a mildly heterogeneous continuum, Wave Motion24, 59-83 (1996). · Zbl 0954.74522
[44] G.D.Manolis, T.V.Rangelov, and R.P.Shaw, Conformal mapping methods for variable parameter elastodynamics, Wave Motion36, 185-202 (2002). · Zbl 1163.74403
[45] G.D.Manolis, P.S.Dineva, and T.V.Rangelov, Wave scattering by cracks in inhomogeneous continua using BIEM, Int. J. Solids Struct.41, 3905-3927 (2004). · Zbl 1079.74562
[46] G.D.Manolis, P.S.Dineva, and T.V.Rangelov, Dynamic fracture analysis of a smoothly inhomogeneous plane containing defects by BEM, Eng. Anal. BE36, 727-737 (2012). · Zbl 1351.74122
[47] M.Mitra, Note on a type of surface waves travelling in a semi‐infinite solid of varying elasticity and density, Bull. Seism. Soc. Am.48, 399-402 (1958).
[48] B.Noble, Methods Based on the Wiener-Hopf Technique (Pergamon Press, New York, 1958). · Zbl 0082.32101
[49] R.Pak and B.B.Guzina, Three‐dimensional Green’s functions for a multilayered half‐space in displacement potentials, J. Eng. Mech.128(4), 449-461 (2002).
[50] G.Panza, I.Paskaleva, P.Dineva, and C.La Mura, Earthquake site effects modelling by hybrid MS‐BIEM: The case study of Sofia, Bulgaria, Rend. Sci. Fis. Accad. Lin.20, 91-116 (2009). · Zbl 1178.86013
[51] C.L.Pekeris, The propagation of Rayleigh waves in heterogeneous media, J. Appl. Phys.6, 133-138 (1935). · Zbl 0011.43003
[52] T.Rangelov and G.Manolis, Point force and dipole solutions in the inhomogeneous half‐plane under time‐harmonic conditions, Mech. Res. Commun.56, 90-97 (2014).
[53] T.V.Rangelov and P.S.Dineva, Steady‐state plane wave propagation in inhomogeneous 3D media, J. Theor. Appl. Mech.35, 17-38 (2005).
[54] T.V.Rangelov, G.D.Manolis, and P.S.Dineva, Elastodynamic fundamental solutions for certain families of 2D inhomogeneous anisotropic domains: basic derivation, Eur. J. Mech. A, Solids24, 820-836 (2005). · Zbl 1125.74344
[55] F.J.Sanchez‐Seisma and E.Rosenblueth, Ground motion at canyons of arbitrary shape under incident SH waves, Earth. Eng. Struct. Dyn.7, 441-450 (1979).
[56] F.J.Sanchez‐Seisma, R.Madariaga, and K.Irikura, An approximate elastic 2‐D Green’s function for a constant-gradient medium, Geophys. J. Int.146, 237-248 (2001).
[57] R.Sato, Seismic waves due to a dislocation source model in a multi-layered medium. Part I. Theory, J. Phys. Earth21, 155-172 (1973).
[58] S.J.Singh and A.Ben‐Menahem, Decoupling of the vector wave equation of elasticity for radially heterogeneous media, J. Acoust. Soc. Am.46, 655-660 (1969). · Zbl 0208.27202
[59] M.D.Trifunac, Scattering of plane SH waves by semi‐cilindrical canyon, Earthq. Eng. Struct. Dyn.1, 267-281 (1973).
[60] I.Vardoulakis and C.Vrettos, Dispersion law of Rayleigh-type waves in a compressible Gibson half‐space, Int. J. Numer. Anal. Methods Geomech.12, 639-655, (1988). · Zbl 0669.73016
[61] C.Vrettos, Dispersive SH‐surface waves in soil deposits of variable shear modulus, Soil Dyn. Earthq. Eng.9, 255-264 (1990).
[62] C.Vrettos, Forced anti‐plane vibrations at the surface of an inhomogeneous half‐space, Soil Dyn. Earthq. Eng.10, 230-235 (1991).
[63] C.D.Wang, Y.T.Lin, Y.S.Jeng, and Z.W.Ruan, Wave propagation in an inhomogeneous cross-anisotropic medium, Int. J. Numer. Anal. Methods Geomech.34, 711-732, (2010). · Zbl 1273.74152
[64] K.Watanabe, Transient response of an inhomogeneous elastic solid to an impulsive SH‐source (variable SH‐wave velocity) Bull. JSME25, 315-320 (1982).
[65] K.Watanabe and R.G.Payton, Green’s function and its non‐wave nature for SH‐wave in inhomogeneous elastic solid, Int. J. Eng. Sci.42, 2087-2106 (2004). · Zbl 1211.74123
[66] J.T.Wilson, Surface waves in a heterogeneous medium, Bull. Seism. Soc. Am.32, 297-304 (1942). · Zbl 0063.08275
[67] F.Wuttke, Beitrag zur Standortidentifizierung mit Oberflächenwellen, PhD thesis (Bauhaus Universität, Weimar, 2005).
[68] F.Wuttke, P.Dineva, and T.Schanz, Seismic wave propagation in laterally inhomogeneous geological region via a new hybrid approach, J. Sound Vibr.330, 664-684 (2011).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.