×

Entropy numbers of spheres in Banach and quasi-Banach spaces. (English) Zbl 1326.41011

For \(K \subset Y\), where \(Y\) is a finite-dimensional (quasi-)Banach space and \(B_{Y}\) denotes the closed unit ball in \(Y\), the \(k\)th (dyadic) entropy number \(e_{k}(K,Y)\) is defined as \[ e_{k}(K,Y) = \min \Bigg\{ \varepsilon > 0 : K \subset \bigcup_{j=1}^{2^{k-1}} (x_{j}+\varepsilon B_{Y}) \text{ for some } x_{1},\dots,x_{2^{k-1}} \in Y \Bigg\}. \] The authors prove sharp upper bounds on the entropy numbers \(e_{k}(\mathbb{S}_{p}^{d-1},\ell_{q}^{d})\) of the \(p\)-spheres \(\mathbb{S}_{p}^{d-1}=\{ x \in \mathbb{R}^{d} : \| x \|_{p} = 1 \}\) in \(\ell_{q}^{d}=(\mathbb{R}^{d},\| \cdot \|_{q})\) in the case \(k \geq d\) and \(0<p\leq q \leq \infty\) (the (quasi-)norms are defined by \(\| x \|_{p} := (\sum_{i=1}^{d} \, | x_{i} |^{p})^{1/p}\) for \(0<p<\infty\) and \(\| x \|_{\infty} := \max \{ | x_{i} | : i=1,2,\dots,d \}\)). Finally, the presented methods are generalized in order to study entropy numbers \(e_{k}(\mathbb{S}_{X},Y)\) for general finite-dimensional quasi-Banach spaces \(X\) and \(Y\).

MSC:

41A10 Approximation by polynomials
41A25 Rate of convergence, degree of approximation
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Carl, B.; Stephani, I., (Entropy, Compactness and the Approximation of Operators. Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, vol. 98 (1990), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0705.47017
[2] Edmunds, D. E.; Triebel, H., (Function Spaces, Entropy Numbers, Differential Operators. Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, vol. 120 (1996), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0865.46020
[3] Gordon, Y.; Litvak, A.; Schütt, C.; Werner, E., Orlicz norms of sequences of random variables, Ann. Probab., 30, 1833-1853 (2002) · Zbl 1016.60008
[4] Kühn, T., A lower estimate for entropy numbers, J. Approx. Theory, 110, 120-124 (2001) · Zbl 0995.47014
[5] Lindenstrauss, J.; Tzafriri, L., (Classical Banach Spaces I — Sequence Spaces. Classical Banach Spaces I — Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92 (1977), Springer: Springer Berlin-New York) · Zbl 0362.46013
[7] Schütt, C., Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory, 40, 121-128 (1984) · Zbl 0497.41017
[8] Triebel, H., Fractals and Spectra (1997), Birkhäuser: Birkhäuser Basel · Zbl 0898.46030
[9] Weston, A., On the uniform classification of \(L_p(\mu)\) spaces, Proc. Centre Math. Appl. Austral. Nat. Univ., 29, 231-237 (1992) · Zbl 0802.46029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.