×

On hydrodynamic equations at the limit of infinitely many molecules. (English. Russian original) Zbl 1326.35262

J. Math. Sci., New York 205, No. 2, 222-239 (2015); translation from Probl. Mat. Anal. 77, 91-104 (2014).
The authors show that if weak convergence of point measures together with moments of order \(2+\epsilon\) (with \(\epsilon>0\) small) exist, then dynamics of \(N\)-classical particles interacting through suitable 2-body potentials converge to the corresponding hydrodynamic equations for density and momentum.

MSC:

35Q35 PDEs in connection with fluid mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics

References:

[1] J. C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. R. Soc. Lond.157, 49-88 (1867). · doi:10.1098/rstl.1867.0004
[2] L. Boltzmann, Lectures on Gas Theory, Univ. California Press (1964).
[3] S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge Univ. Press, London (1970).
[4] J. H Irving and J. G. Kirkwood “The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics,” J. Chem. Phys.18, No. 6, 817-829 (1950). · doi:10.1063/1.1747782
[5] H. Grad, “On the kinetic theory of rarefied gases,” Commun. Pure Appl. Math.2, 331-407 (1949). · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[6] C. B. Morrey, “On the derivation of the equations of hydrodynamics from statistical mechanics,” Commun. Pure Appl. Math.8, 279-326 (1955). · Zbl 0065.19406 · doi:10.1002/cpa.3160080206
[7] O. E. Lanford, “Time evolution of large classical systems,” Dyn. Syst., Theor. Appl., Battelle Seattle 1974 Renc., Lect. Notes Phys.38, 1-111 (1975). · Zbl 0329.70011
[8] R. Esposito and M. Pulvirenti, “From particles to fluids,” in Handbook of Mathematical Fluid Dynamics. III, pp. 1-82, North-Holland, Amsterdam (2004). · Zbl 1221.82080
[9] A. N. Gorban and I. Karlin, “Hilbert’s 6th problem: Exact and approximate hydrodynamic manifolds for kinetic equations,” Bull. Am. Math. Soc.51, No. 2, 187-246 (2014). · Zbl 1294.35052 · doi:10.1090/S0273-0979-2013-01439-3
[10] O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Philos. Trans. R. Soc. Lond., A186, 123-164 (1895). · JFM 26.0872.02 · doi:10.1098/rsta.1895.0004
[11] D. W. Jepsen and D. ter Haar, “A derivation of the hydrodynamic equations from the equations of motion of collective coordinates,” Physica28, 70-75 (1962). · Zbl 0125.23203 · doi:10.1016/0031-8914(62)90093-9
[12] S. Dostoglou, “On Hydrodynamic averages,” J. Math. Sci., New York189, No. 4, 582-595 (2013). · Zbl 1285.82027 · doi:10.1007/s10958-013-1209-9
[13] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel (2005). · Zbl 1090.35002
[14] L. D. Landau and E. M. Lifshitz, Mechanics. Pergamon Press, (1976). · Zbl 0081.22207
[15] K. Aoki, C. Bardos, F. Golse, and Y. Sone, “Derivation of hydrodynamic limits from either the Liouville equation or kinetic models: Study of an example,” RIMS Kokyuroku No. 1146, 154-181 (2000). · Zbl 0968.82523
[16] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger Pub Co, Malabar (1972).
[17] H. Cartan, Differential Calculus, Hermann, Paris (1971). · Zbl 0223.35004
[18] R. B. Ash, Real Analysis and Probability, Academic Press, New York etc. (1972). · Zbl 1381.28001
[19] L. Ambrosio, N. Fusco, and D. Palara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000). · Zbl 0957.49001
[20] J. Jacod and P. Protter, Probability Essentials, Springer, Berlin (2003). · Zbl 1014.60004
[21] H. Goldstein, Classical Mechanics, Addison-Wesley, Massachusetts (1980). · Zbl 0491.70001
[22] I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes I, Springer, Berlin (1974) · Zbl 0291.60019 · doi:10.1007/978-3-642-61943-4
[23] N. C. Jacob, University of Missouri Ph.D. Thesis (2013). · Zbl 1285.82027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.