×

Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay. (English) Zbl 1326.35188

Summary: In this paper, we consider initial-boundary value problem of Euler-Bernoulli viscoelastic equation with a delay term in the internal feedbacks. Namely, we study the following equation \[ u_{tt}(x,t)+ \Delta^2 u(x,t)-\int\limits_0^t g(t-s)\Delta^2 u(x,s)\mathrm{d}s+\mu_1u_t(x,t)+\mu_2 u_t(x,t-\tau)=0 \] together with some suitable initial data and boundary conditions in \(\Omega\times (0,+\infty)\). For arbitrary real numbers \(\mu_1\) and \(\mu_2\), we prove that the above-mentioned model has a unique global solution under suitable assumptions on the relaxation function \(g\). Moreover, under some restrictions on \(\mu_1\) and \(\mu_2\), exponential decay results of the energy for the concerned problem are obtained via an appropriate Lyapunov function.

MSC:

35L35 Initial-boundary value problems for higher-order hyperbolic equations
93D15 Stabilization of systems by feedback
35R09 Integro-partial differential equations
74D05 Linear constitutive equations for materials with memory
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Christensen R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1977)
[2] Boltzmann L.: Zur Theorie der Elastischen Nachwirkung. Sitzungsber. Math. Naturwiss. KL. Kaiserl. Acad. Wiss. 70(2), 175 (1874) · JFM 06.0648.02
[3] Fabrizio M., Polidoro S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81, 1245-1264 (2002) · Zbl 1035.45006 · doi:10.1080/0003681021000035588
[4] Horn M.A.: Uniform decay rates for the solutions to the Euler-Bernoulli plate equation with boundary feedback acting via bending moments. Differ. Integral Equ. 5, 1121-1150 (1992) · Zbl 0754.35177
[5] Ji G., Lasiecka I.: Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting behavior. J. Math. Anal. Appl. 229, 452-479 (1999) · Zbl 0922.35099 · doi:10.1006/jmaa.1998.6170
[6] Lagnese J.E., Leugering G.: Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Equ. 91, 355-388 (1991) · Zbl 0802.73052 · doi:10.1016/0022-0396(91)90145-Y
[7] Lange H., Perla Menzala G.: Rates of decay of a nonlocal beam equation. Differ. Integral Equ. 10(6), 1075-1092 (1997) · Zbl 0940.35191
[8] Lasiecka I.: Exponential decay rates for the solutions of the Euler-Bernoulli equations with boundary dissipation occuring in the moments only. J. Differ. Equ. 95, 169-182 (1992) · Zbl 0757.35057 · doi:10.1016/0022-0396(92)90048-R
[9] Lasiecka I., Triggiani R.: Exact controllability of the Euler-Bernoulli equation with boundary controls for dislacement and moment. J. Math. Anal. Appl. 146, 1-33 (1990) · Zbl 0694.49026 · doi:10.1016/0022-247X(90)90330-I
[10] Guesmia A.: Existence globale et stabilisation interne nonlinéaire d’un système de Petrovsky. Bull. Belg. Math. Soc. Simon Stevin 5(4), 583-594 (1998) · Zbl 0916.93034
[11] Messaoudi S.A.: Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 265(2), 296-308 (2002) · Zbl 1006.35070 · doi:10.1006/jmaa.2001.7697
[12] Lagnese J.E.: Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping. Int. Ser. Numer. Math. 91, 211-236 (1989) · Zbl 0699.93070
[13] Munoz Rivera J., Lapa E.C., Barreto R.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61-87 (1996) · Zbl 0876.73037 · doi:10.1007/BF00042192
[14] Cavalcanti M.M.: Existence and uniform decay for Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discret. Contin. Dyn. Syst. 8(3), 675-695 (2002) · Zbl 1009.74034 · doi:10.3934/dcds.2002.8.675
[15] Cavalcanti M.M., Cavalcanti V.N., Ma T.F.: Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains. Differ. Integral Equ. 17(5-6), 495-510 (2004) · Zbl 1174.74320
[16] Park J.Y., Kim J.A.: Existence and uniform decay for Euler-Bernoulli beam equation with memory term. Math. Method Appl. Sci. 27, 1629-1640 (2004) · Zbl 1078.35021 · doi:10.1002/mma.512
[17] Ha T.G., Park J.Y.: Stabilization of the viscoelastic Euler-Bernoulli type equation with a local nonlinear dissipation. Dyn. PDE 6(4), 335-366 (2009) · Zbl 1195.35228
[18] Park J.Y., Kang J.R.: Energy decay estimates for the Bernoulli-Euler-type equation with a local degenerate dissipation. Appl. Math. Lett. 23(10), 1274-1279 (2010) · Zbl 1198.35035 · doi:10.1016/j.aml.2010.06.012
[19] Cavalcanti M.M., Domingos Cavalcanti V.N., Prates Filho J.S., Soriano J.A.: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ. Integral Equ. 14(1), 85-116 (2001) · Zbl 1161.35437
[20] Chaáo R.C., Bisognin E., Bisignin V., Pazoto A.F.: Asymptotic behavior of a Bernoulli- Euler type equation with nonlinear localized damping. Progr. Nonlinear Differ. Equ. Appl. 66, 67-91 (2006) · Zbl 1105.35017
[21] Dafermos C.M.: Energy methods for non linear hyperbolic Volterra integro-differential equation. Comm. P. D. E. 3, 119-178 (1979)
[22] Kim J.U.: A unique continuation property of a beam equation with variable coefficients, in estimation and control of distributed parameter systems. Int. Ser. Numer. Math. 100, 197-205 (1991) · Zbl 0741.35088 · doi:10.1007/978-3-0348-6418-3_14
[23] Kim J.U.: Exact controllability of an Euler-Bernoulli equation. SIAM J. Control Optim. 30, 1001-1023 (1992) · Zbl 0754.35179 · doi:10.1137/0330054
[24] Nicaise S., Pignotti C.: Stability and instability results of the wave equations with a delay term in the boundary or internal feedbacks. SIAM J.Control Optim. 45, 1561-1585 (2006) · Zbl 1180.35095 · doi:10.1137/060648891
[25] Kirane M., Said-Houari B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065-1082 (2011) · Zbl 1242.35163 · doi:10.1007/s00033-011-0145-0
[26] Dai, Q., Yang, Z.: Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. (2013). doi:10.1007/s00033-013-0365-6 · Zbl 0916.93034
[27] Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Differ. Integral Equ. 6, 507-533 (1993) · Zbl 0803.35088
[28] Lasiecka I., Messaoudi S.A., Mustafa M.I.: Note on intrinsic decay rates for wave equations with memory. J. Math. Phys. 54, 031504 (2013) · Zbl 1282.74018 · doi:10.1063/1.4793988
[29] Messaoudi S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457-1467 (2008) · Zbl 1145.35078 · doi:10.1016/j.jmaa.2007.11.048
[30] Mustafa M.I., Messaoudi S.A.: General stability result for viscoelastic wave equation. J. Math. Phys. 53, 053702 (2012) · Zbl 1276.76009 · doi:10.1063/1.4711830
[31] Adams R. A., Fournier John J.F.: Sobolev Spaces, 2nd edition. Elsevier, Singapore (2009) · Zbl 0385.46024
[32] Arnold V.I.: Ordinary Differential Equations, 1st ed. Springer, Berlin (1992) · Zbl 0744.34001
[33] Evans L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1997) · Zbl 0902.35001
[34] Ladyzhenskaya O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985) · Zbl 0588.35003 · doi:10.1007/978-1-4757-4317-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.