×

The Kobayashi balls of (\({\mathbb {C}}\)-)convex domains. (English) Zbl 1326.32021

Let \(D\subset\mathbb C^n\) be a domain that contains no complex lines and let \(q\in D\) be fixed. Let \(q^1\in\partial D\) be such that \(\|q^1-q\|=d_D(q)=:\tau_1(q)\), where \(d_\varOmega(z):=\text{dist}(z,\partial\varOmega)\). Let \(H_1:=q+(q^1-q)^\perp\), \(D_1:=D\cap H_1\), and let \(q^2\in\partial D_1\) be such that \(\|q^2-q\|=d_{D_1}(q)=:\tau_2(q)\). We put \(H_2:=q+\{q^1-q, q^2-q\}^\perp\), \(D_2:=D\cap H_2\) and so on. The basis \(\frac{q^j-q}{\|q^j-q\|}\), \(j=1,\dots,n\), is called the minimal basis at \(q\). The authors characterize the Carathéodory (resp. Lempert) balls \(C_D(q,r)\) (resp. \(L_D(q,r)\)) in terms of the minimal basis at \(q\). The main result of the paper is the following theorem. We assume that the above minimal basis at \(q\) coincides with the standard basis of \(\mathbb C^n\). Then:
(i)
if \(D\) is weakly linearly convex, then
\[ \mathbb D^n\Big(q,\frac1n(\tanh r)\tau(q)\Big)\subset\Big\{z:\sum_{j=1}^n\frac{|z_j-q_j|}{\tau_j(q)} <\tanh r\Big\}\subset L_D(q,r), \] where \(\mathbb D^n(q,s):=\big\{z\in\mathbb C^n: |z_j-q_j|<s_j,\;j=1,\dots,n\big\}\);
(ii)
if \(D\) is convex, then \(C_D(q,r)\subset\mathbb D^n\big(q,(e^{2r}-1)\tau(q)\big)\);
(iii)
if \(D\) is \(\mathbb C\)-convex, then \(C_D(q,r)\subset\mathbb D^n\big(q,(e^{4r}-1)\tau(q)\big)\).

MSC:

32F45 Invariant metrics and pseudodistances in several complex variables
32F17 Other notions of convexity in relation to several complex variables

References:

[1] Andersson, M., Passare, M., Sigurdsson, R.: Complex Convexity and Analytic Functionals. Birkhäuser, Berlin (2004) · Zbl 1057.32001 · doi:10.1007/978-3-0348-7871-5
[2] Aladro, G.: The comparability of the Kobayashi approach region and the admissible approach region. Illinois J. Math. 33, 42-63 (1989) · Zbl 0647.32023
[3] Balakumar, G.P., Mahajan, P., Verma, K.: Bounds for invariant distances on pseudoconvex Levi corank nne domains and applications (2013). arXiv:1303.3439 · Zbl 1326.32020
[4] Conrad, M.: Nicht isotrope Abschätzungen für lineal konvexe Gebiete endlichen Typs. Dissertation, Universität Wuppertal (2002)
[5] Gehring, F.W., Palka, B.P.: Quasiconformally homogeneous domains. J. Anal. Math. 30, 172-199 (1976) · Zbl 0349.30019 · doi:10.1007/BF02786713
[6] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. de Gruyter, New York (1993) · Zbl 0789.32001 · doi:10.1515/9783110870312
[7] Mahajan, P., Verma, K.: Some aspects of the Kobayashi and Carathéodory metrics on pseudoconvex domains. J. Geom. Anal. 22, 491-560 (2012) · Zbl 1254.32016 · doi:10.1007/s12220-010-9206-4
[8] Nikolov, N.: Localization of invariant metrics. Arch. Math. 79, 67-73 (2002) · Zbl 1008.32005 · doi:10.1007/s00013-002-8286-1
[9] Nikolov, N., Pflug, P.: Behavior of the Bergman kernel and metric near convex boundary points. Proc. Am. Math. Soc. 131, 2097-2102 (2003) · Zbl 1020.32001 · doi:10.1090/S0002-9939-03-07030-8
[10] Nikolov, N., Pflug, P.: Estimates for the Bergman kernel and metric of convex domains in \[{\mathbb{C}}^nCn\]. Ann. Pol. Math. 81, 73-78 (2003) · Zbl 1022.32001 · doi:10.4064/ap81-1-6
[11] Nikolov, N., Pflug, P., Zwonek, W.: An example of a bounded \[{\mathbb{C}}C\]-convex domain which is not biholomorphic to a convex domain. Math. Scand. 102, 149-155 (2008) · Zbl 1155.32009
[12] Nikolov, N., Pflug, P., Thomas, P.J., Zwonek, W.: On a local characterization of pseudoconvex domains. Indiana Univ. Math. J. 58, 2661-2671 (2009) · Zbl 1202.32010 · doi:10.1512/iumj.2009.58.3751
[13] Nikolov, N., Pflug, P., Zwonek, W.: Estimates for invariant metrics on \[{\mathbb{C}}C\]-convex domains. Trans. Am. Math. Soc. 363, 6245-6256 (2011) · Zbl 1232.32005 · doi:10.1090/S0002-9947-2011-05273-6
[14] Nikolov, N.: Estimates of invariant metrics on “convex domains”. Ann. Mat. Pura Appl. 193, 1595-1605 (2014) · Zbl 1305.32001 · doi:10.1007/s10231-013-0345-7
[15] Sahin, S.: Poletsky-Stessin Hardy spaces on complex ellipsoids in \[{\mathbb{C}}^nCn\]. Complex Anal. Oper. Theory. doi:10.1007/s11785-014-0440-9 · Zbl 1332.32009
[16] Zimmer, A.M.: Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type (2014). arXiv:1405.2858
[17] Zimmer, A.M.: Gromov hyperbolicity, the Kobayashi metric, and \[{\mathbb{C}}C\]-convex sets. http://math.uchicago.edu/ andrew.zimmer/kobayashi_Cconvex.pdf (2014) · Zbl 1202.32010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.