×

Polygons in Minkowski three space and parabolic Higgs bundles of rank 2 on \(\mathbb{CP}^1\). (English) Zbl 1326.14078

Let \(H(\beta)\) denote the moduli space of parabolic Higgs bundles \((E, \phi)\) where \(E\) is a holomorphically trivial vector bundle of rank \(2\) on the complex projective line \({\mathbb P}^1_{\mathbb C}\) with a complete flag over each of the \(n\) marked points \(x_1, \dots, x_n\) and weights \(0\leq \beta_1(x_i) < \beta_2(x_i) <1\) (at \(x_i\)) and \(\phi\) is a meromorphic \(\mathrm{End}(E)\)-valued \(1\)-form holomorphic outside the marked points such that \(\phi\) has at most a simple pole with a nilpotent residue (with respect to the flag) at each of the marked points. Let \(\sigma\) denote the involution on \(H(\beta)\) defined by \((E, \phi) \mapsto (E, - \phi)\). The hyper polygon space \(X(\alpha)\), with \(\alpha_i = \beta_2(x_i)- \beta_1(x_i)\), is the hyper Kähler quotient of \(T^* ({\mathbb C}^{2n})\) by \(K = (\mathrm{SU}(2) \times \mathrm{U}(1)^n) / ({\mathbb Z}/2{\mathbb Z})\) where \({\mathbb Z}/2{\mathbb Z}\) acts on the each factor by \(-1\).
L. Godinho and A. Mandini [Adv. Math. 244, 465–532 (2013; Zbl 1318.32018)] had established an isomorphism between \(H(\beta)\) and \(X(\alpha)\) with \(\sigma\) corresponding to the involution \(\sigma'\) on \(X(\alpha)\) defined by \([p,q] \mapsto [-p, q] \in T^*({\mathbb C}^{2n})\). The authors study the fixed point set of \(X(\alpha)\) for \(\sigma'\) which enables them to determine the fixed point set of \(H(\beta)\) for \(\sigma\). They show that this fixed point set has a compact component \(M(\beta)\) isomorphic to the moduli space of parabolic vector bundles of rank \(2\) and degree \(0\) on \({\mathbb P}^1_{\mathbb C}\) and other components \(Z_S\) parametrised by certain subsets \(S\) of \(\{1, \dots, n\}\). Explicit description of the components \(Z_S\) is given. Finally each \(Z_S\) is shown to be diffeomorphic to a moduli space of closed polygons in Minkowski \(3\)-space i.e. in \({\mathbb R}^3\) equipped with the Minkowski inner product \(v_1 \circ v_2 = - x_1 x_2 - y_1 y_2 +t_1 t_2\) for \(v_i = (x_i, y_i, t_i), i= 1,2\).

MSC:

14H60 Vector bundles on curves and their moduli
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

Citations:

Zbl 1318.32018

References:

[1] N. L. Balazs, A. Voros, Chaos on the pseudosphere, Phys. Rep. 143 (1986), 109-240. · doi:10.1016/0370-1573(86)90159-6
[2] I. Biswas, C. Florentino, L. Godinho, A. Mandini, Symplectic form on hyperpolygon spaces, preprint, arXiv:1306.4806. · Zbl 1328.14018
[3] U. Boden, K. Yokogawa, Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves: I, Internat. J. Math. 7 (1996), 573-598. · Zbl 0883.14012 · doi:10.1142/S0129167X96000311
[4] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), 127-131. · Zbl 0634.53046 · doi:10.1112/plms/s3-55.1.127
[5] P. Foth, Polygons in Minkowski space and the Gelfand-Tseltin method for pseudo-unitary groups, J. Geom. Phys. 58 (2008), 825-832. · Zbl 1142.53068 · doi:10.1016/j.geomphys.2008.02.003
[6] L. Godinho, A. Mandini, Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles, Adv. Math. 244 (2013), 465-532. · Zbl 1318.32018 · doi:10.1016/j.aim.2013.04.026
[7] N. J. Hitchin, Self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126. · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[8] N. J. Hitchin, Hyper-Kähler manifolds, in: Séminaire Bourbaki, Astérisque 206 (1992), Exp. no. 748, pp. 137-166. · Zbl 0979.53051
[9] M. Harada, N. Proudfoot, Hyperpolygon spaces and their cores, Trans. Amer. Math. Soc. 357 (2005), 1445-1467. · Zbl 1067.53036 · doi:10.1090/S0002-9947-04-03522-6
[10] H. Konno, Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Japan 45 (1993), 253-276. · Zbl 0787.53022 · doi:10.2969/jmsj/04520253
[11] H. Konno, On the cohomology ring of the hyperkähler analogue of polygon spaces, in: Integrable Systems, Topology and Physics (Tokyo, 2000), Contemp. Math., Vol. 309, Amer. Math. Soc., Providence, RI, 2002, pp. 129-149. · Zbl 1073.53114
[12] H. Nakajima, Hyper-Käler structures on moduli spaces of parabolic Higgs bundles on Riemannian surfaces, in: Moduli of Vector Bundles, Lect. Notes Pure Appl. Math., Vol. 179, Marcel Dekker, 1996, pp. 199-208. · Zbl 0881.14006
[13] H. Nakajima, Varieties associated with quivers, in: Representation Theory of Algebras and Related Topics (Mexico City, 1994), CMS Conf. Proc., Vol. 19, Amer. Math. Soc. Providence, RI, 1996, pp. 139-157. · Zbl 0870.16008
[14] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. · Zbl 0970.17017 · doi:10.1215/S0012-7094-98-09120-7
[15] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96 (1982), 209 pp. · Zbl 0517.14008
[16] C. T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770. · Zbl 0713.58012 · doi:10.1090/S0894-0347-1990-1040197-8
[17] Vu The Khoi, On the symplectic volume of the moduli space of spherical and Euclidean polygons, Kodai Math. J. 28 (2005), 199-208. · Zbl 1104.53083 · doi:10.2996/kmj/1111588046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.