×

Angular momentum in QGP holography. (English) Zbl 1325.81192

Summary: The quark chemical potential is one of the fundamental parameters describing the quark-gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions) give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

MSC:

81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
81V05 Strong interaction, including quantum chromodynamics
82D10 Statistical mechanics of plasmas

References:

[1] Ohnishi, Akira, Phase diagram and heavy-ion collisions: overview, Prog. Theor. Phys. Suppl., 193, 1 (2012)
[2] Mohanty, B., Exploring the QCD phase diagram through high energy nuclear collisions: an overview, PoS, CPOD2013, 001 (2013)
[3] Satz, Helmut, Probing the states of matter in QCD, Int. J. Mod. Phys. A, 28, 1330043 (2013)
[4] Selyuzhenkov, Ilya, Recent experimental results from the relativistic heavy-ion collisions at LHC and RHIC
[5] Dong, Xin, Nucl. Phys. A, 904, 19c (2013), (for the STAR Collaboration), Highlights from STAR
[6] Unger, M., EPJ Web Conf., 52, 01009 (2013), (for the NA61/SHINE Collaboration), Results from NA61/SHINE
[7] Bleicher, M.; Nahrgang, M.; Steinheimer, J.; Bicudo, P., Physics prospects at FAIR, Acta Phys. Polon. B, 43, 731 (2012)
[8] Kekelidze, V. D.; Kovalenko, A. D.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V., NICA at JINR: new prospects for exploration of quark-gluon matter, Phys. At. Nucl., 75, 542 (2012)
[9] Fodor, Zoltan; Katz, Sandor D.; Schmidt, Christian, The density of states method at non-zero chemical potential, J. High Energy Phys., 0703, 121 (2007)
[10] Endrodi, G.; Fodor, Z.; Katz, S. D.; Szabo, K. K., The QCD phase diagram at nonzero quark density, J. High Energy Phys., 1104, 001 (2011)
[11] Blaschke, David; Alvarez-Castillo, David E., Sanjin Benic, Mass-radius constraints for compact stars and a critical endpoint. Mass-radius constraints for compact stars and a critical endpoint, PoS, CPOD2013, 063 (2013)
[12] Alford, Mark G.; Schwenzer, Kai, What flashes of pulsars can teach us about their interior
[13] Buballa, Michael; Dexheimer, Veronica; Drago, Alessandro; Fraga, Eduardo; Haensel, Pawel; Mishustin, Igor; Pagliara, Giuseppe; Schaffner-Bielich, Jurgen; Schramm, Stefan; Sedrakian, Armen; Weber, Fridolin, EMMI Rapid Reaction Task Force Meeting on ‘Quark Matter in Compact Star’
[14] Gupta, Sourendu; Karthik, Nikhil; Majumdar, Pushan, The equation of state of QCD at finite chemical potential
[15] Gavai, Rajiv V., QCD critical point: the race is on · Zbl 0995.81056
[16] Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim, Gauge/string duality, hot QCD and heavy ion collisions · Zbl 1325.81004
[17] Chernicoff, Mariano; Garcia, J. Antonio; Guijosa, Alberto; Pedraza, Juan F., Holographic lessons for quark dynamics, J. Phys. G, 39, 054002 (2012)
[18] Kim, Youngman; Shin, Ik Jae; Tsukioka, Takuya, Holographic QCD: past, present, and future, Prog. Part. Nucl. Phys., 68, 55 (2013)
[19] DeWolfe, Oliver; Gubser, Steven S.; Rosen, Christopher; Teaney, Derek, Heavy ions and string theory, Prog. Part. Nucl. Phys., 75, 86 (2014)
[20] Janik, Romuald A., AdS/CFT and applications · Zbl 1066.81650
[21] Sharma, Sayantan, QCD thermodynamics on the lattice, Adv. High Energy Phys., 2013, 452978 (2013)
[22] Ewerz, Carlo; Samberg, Andreas, Heavy probes in strongly coupled plasmas with chemical potential · Zbl 1388.81658
[23] Kovtun, P.; Son, D. T.; Starinets, A. O., Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601 (2005)
[24] Schaefer, Thomas, Fluid dynamics and viscosity in strongly correlated fluids
[25] Myers, Robert C.; Paulos, Miguel F.; Sinha, Aninda, Holographic hydrodynamics with a chemical potential, J. High Energy Phys., 0906, 006 (2009)
[26] Albash, Tameem; Johnson, Clifford V., Vortex and droplet engineering in holographic superconductors, Phys. Rev. D, 80, 126009 (2009)
[27] Ramallo, Alfonso V., Introduction to the AdS/CFT correspondence · Zbl 1327.81272
[28] Dain, Sergio, Geometric inequalities for black holes · Zbl 1291.83007
[29] Hennig, Jörg, Geometric relations for rotating and charged AdS black holes · Zbl 1295.83041
[30] Gwak, Bogeun; Lee, Bum-Hoon, Instability of Anti-de Sitter rotating black holes · Zbl 1366.83041
[31] Papadimitriou, Ioannis; Skenderis, Kostas, Thermodynamics of asymptotically locally AdS spacetimes, J. High Energy Phys., 0508, 004 (2005) · Zbl 1081.81085
[32] Caldarelli, Marco M.; Cognola, Guido; Klemm, Dietmar, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quantum Gravity, 17, 399 (2000) · Zbl 0945.83019
[33] Gibbons, G. W.; Perry, M. J.; Pope, C. N., The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quantum Gravity, 22, 1503-1526 (2005) · Zbl 1068.83010
[34] Klemm, D.; Moretti, V.; Vanzo, L., Phys. Rev. D, 60, 109902 (1999), (Erratum)
[35] Casalderrey-Solana, Jorge; Can Gulhan, Doga; Guilherme Milhano, José; Pablos, Daniel; Rajagopal, Krishna, A hybrid strong/weak coupling approach to jet quenching
[36] Ficnar, Andrej; Gubser, Steven S.; Gyulassy, Miklos, Shooting string holography of jet quenching at RHIC and LHC
[37] Betz, Barbara; Gyulassy, Miklos, Azimuthal jet tomography at RHIC and LHC
[38] Betz, Barbara; Gyulassy, Miklos, Constraints on the path-length dependence of jet quenching in nuclear collisions at RHIC and LHC
[39] Sonner, Julian, A rotating holographic superconductor, Phys. Rev. D, 80, 084031 (2009)
[40] Nata Atmaja, A.; Schalm, K., Anisotropic drag force from 4D Kerr-AdS black holes, J. High Energy Phys., 1104, 070 (2011) · Zbl 1250.83042
[41] McInnes, Brett, Fragile black holes and an angular momentum cutoff in peripheral heavy ion collisions, Nucl. Phys. B, 861, 236 (2012) · Zbl 1246.83133
[42] McInnes, Brett, Universality of the holographic angular momentum cutoff, Nucl. Phys. B, 864, 722 (2012) · Zbl 1262.83033
[43] McInnes, Brett, Shearing black holes and scans of the quark matter phase diagram, Class. Quantum Gravity, 31, 025009 (2014) · Zbl 1292.83034
[44] McInnes, Brett; Teo, Edward, Generalised planar black holes and the holography of hydrodynamic shear, Nucl. Phys. B, 878C, 186 (2014) · Zbl 1284.81299
[45] Janik, Romuald A., Strongly coupled plasma - hydrodynamics, thermalization and nonequilibrium behavior · Zbl 1246.83011
[46] Klemm, Dietmar; Maiorana, Andrea, Fluid dynamics on ultrastatic spacetimes and dual black holes · Zbl 1333.83145
[47] Liang, Zuo-Tang; Wang, Xin-Nian, Phys. Rev. Lett., 96, 039901 (2006), (Erratum)
[48] Becattini, F.; Piccinini, F.; Rizzo, J., Angular momentum conservation in heavy ion collisions at very high energy, Phys. Rev. C, 77, 024906 (2008)
[49] Huang, Xu-Guang; Huovinen, Pasi; Wang, Xin-Nian, Quark polarization in a viscous quark-gluon plasma, Phys. Rev. C, 84, 054910 (2011)
[50] Csernai, L. P.; Strottman, D. D.; Anderlik, Cs., Kelvin-Helmholz instability in high energy heavy ion collisions, Phys. Rev. C, 85, 054901 (2012)
[51] Wang, D. J.; Néda, Z.; Csernai, L. P., Viscous potential flow analysis of peripheral heavy ion collisions, Phys. Rev. C, 87, 024908 (2013)
[52] Weber, Fridolin; Orsaria, Milva; Negreiros, Rodrigo, Impact of rotation on the structure and composition of neutron stars
[53] Ayvazyan, Narine S.; Colucci, Giuseppe; Rischke, Dirk H.; Sedrakian, Armen, Rotating hybrid compact stars, Astron. Astrophys. A, 118, 559 (2013)
[54] Carter, B., Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations, Commun. Math. Phys., 10, 280 (1968) · Zbl 0162.59302
[55] Hawking, S. W.; Hunter, C. J.; Taylor, Marika, Rotation and the AdS/CFT correspondence, Phys. Rev. D, 59, 064005 (1999)
[56] Birmingham, Danny, Class. Quantum Gravity, 16, 1197 (1999) · Zbl 0933.83025
[57] Yamamoto, A.; Hirono, Y., Lattice QCD in rotating frames, Phys. Rev. Lett., 111, 081601 (2013)
[58] Csörgo, T.; Nagy, M. I., A new family of exact and rotating solutions of fireball hydrodynamics, Phys. Rev. C, 89, 044901 (2014)
[59] Hessels, Jason W. T.; Ransom, Scott M.; Stairs, Ingrid H.; Cesar Carvalho Freire, Paulo; Kaspi, Victoria M.; Camilo, Fernando, A radio pulsar spinning at 716 Hz, Science, 311, 1901 (2006)
[60] Kobayashi, Shinpei; Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M., Phase transitions at finite baryon density, J. High Energy Phys., 0702, 016 (2007)
[61] Back, B. B., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A, 757, 28 (2005)
[62] Anderson, Michael T.; Chrusciel, Piotr T., Erwann Delay, Nontrivial, static, geodesically complete, vacuum space-times with a negative cosmological constant, J. High Energy Phys., 0210, 063 (2002)
[63] Anderson, M.; Chrusciel, P. T.; Delay, E., Non-trivial, static, geodesically complete space-times with a negative cosmological constant II. \(n \geq 5\), in: O. Biquard, V. Turaev (Eds.), Proceedings of the Strasbourg Meeting on AdS-CFT Correspondence, in: IRMA Lectures in Mathematics and Theoretical Physics, de Gruyter, Berlin, New York · Zbl 1075.83031
[64] Chrusciel, P. T.; Delay, E., Non-singular, vacuum, stationary space-times with a negative cosmological constant, Ann. Henri Poincaré, 8, 219 (2007) · Zbl 1114.83004
[65] Plebanski, J. F.; Demianski, M., Rotating, charged, and uniformly accelerating mass in general relativity, Ann. Phys., 98, 98 (1976) · Zbl 0334.53037
[66] Griffiths, J. B.; Podolsky, J., A new look at the Plebanski-Demianski family of solutions, Int. J. Mod. Phys. D, 15, 335 (2006) · Zbl 1101.83012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.