×

Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. (English) Zbl 1325.76114

Summary: There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid-structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76N99 Compressible fluids and gas dynamics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

parDG
Full Text: DOI

References:

[1] Bazilevs Y, Beiro Da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006a) Isogeometric Analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031-1090 · Zbl 1103.65113 · doi:10.1142/S0218202506001455
[2] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006b) Isogeometric Fluid-Structure Interaction analysis with applications to arterial blood flow. Comput Mech 38(4-5):310-322 · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[3] Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(14):173-201 · Zbl 1169.76352 · doi:10.1016/j.cma.2007.07.016
[4] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric Fluid-Structure Interaction: theory, algorithms, and computations. Comput Mech 43(1):3-37 · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[5] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device. Comput. Methods Appl Mech Eng 198(45):3534-3550 · Zbl 1229.74096 · doi:10.1016/j.cma.2009.04.015
[6] Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric Analysis using T-splines. Comput. Methods Appl Mech Eng 199(58):229-263 · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036
[7] Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65(1-3):236-253 · Zbl 1428.76087 · doi:10.1002/fld.2454
[8] Bazilevs Y, Takizawa K, Tezduyar TE (2013a) Challenges and directions in computational fluid-structure interaction. Math Models Methods Appl Sci 23:215-221 · Zbl 1261.76025 · doi:10.1142/S0218202513400010
[9] Bazilevs Y, Takizawa K, Tezduyar TE (2013b) Computational fluid-structure interaction. Methods and applications. Wiley, Chichester · Zbl 1286.74001 · doi:10.1002/9781118483565
[10] Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng, published online. doi:10.1007/s11831-014-9119-7 · Zbl 1348.74095
[11] Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner-Mindlin shell. Comput Methods Appl Mech Eng 199(5):276-289 · Zbl 1227.74107 · doi:10.1016/j.cma.2009.05.011
[12] Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217-220:77-95 · Zbl 1253.74089
[13] Casquero H, Bona-Casas C, Gomez H (2014) A NURBS-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2014.10.055 · Zbl 1423.74261
[14] Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113-140 · doi:10.1146/annurev.matsci.32.112001.132041
[15] Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\[ \alpha\] α method. J Appl Mech 60:371-375 · Zbl 0775.73337 · doi:10.1115/1.2900803
[16] Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric Analysis of structural vibrations. Comput Methods Appl Mech Eng 195(4143):5257-5296 · Zbl 1119.74024 · doi:10.1016/j.cma.2005.09.027
[17] Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in Isogeometric structural analysis. Comput Methods Appl Mech Eng 196(4144):4160-4183 · Zbl 1173.74407 · doi:10.1016/j.cma.2007.04.007
[18] Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester · Zbl 1378.65009 · doi:10.1002/9780470749081
[19] Cueto-Felgueroso L, Juanes R (2008) Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys Rev Lett 101:244504 · doi:10.1103/PhysRevLett.101.244504
[20] Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction. Comput Mech 43:81-90 · Zbl 1235.74272 · doi:10.1007/s00466-008-0254-6
[21] Diehl D (2007) Higher order schemes for simulation of compressible liquid-vapor flows with phase change. PhD Thesis, Albert-Ludwigs-Universitat · Zbl 1161.76002
[22] Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester · doi:10.1002/0470013826
[23] Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian-Eulerian methods, vol 1, Chapter 14. Wiley, New York · Zbl 1366.76106
[24] Dunn JE, Serrin J (1985) On the thermomechanics of interstitial working. Arch Rational Mech Anal 88(2):95-133 · Zbl 0582.73004 · doi:10.1007/BF00250907
[25] Elguedj T, Bazilevs Y, Calo VM, Hughes TJR \[(2008) \bar{B}B\]¯ and \[\bar{F}F\]¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197(3340):2732-2762 · Zbl 1194.74518 · doi:10.1016/j.cma.2008.01.012
[26] Farhat C, Rallu A, Shankaran S (2008) A higher-order generalized Ghost Fluid Method for the Poor for the three-dimensional two-phase flow computation of underwater implosions. J Comput Phys 227(16):7674-7700 · Zbl 1269.76073 · doi:10.1016/j.jcp.2008.04.032
[27] Farhat C, Rallu A, Wang K, Belytschko T (2010) Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible Fluid-Structure Interaction problems. Int J Numer Methods Eng 84(1):73-107 · Zbl 1202.74167 · doi:10.1002/nme.2883
[28] Galenko PK, Gomez H, Kropotin NV, Elder KR (2013) Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation. Phys Rev E 88(1):013310 · doi:10.1103/PhysRevE.88.013310
[29] Gelbart WM, Ben-Shaul A (1996) The new science of complex fluids. J Phys Chem 100(31):13169-13189 · doi:10.1021/jp9606570
[30] Gibbs JW (1876) On the equilibrium of heterogeneous substances. Trans Conn Acad 3:108-248 · JFM 08.0559.03
[31] Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310-5327 · Zbl 1419.76439 · doi:10.1016/j.jcp.2011.03.033
[32] Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric Analysis of the Cahn-Hilliard phase-field model. Comput Methods Appl Mech Eng 197:4333-4352 · Zbl 1194.74524 · doi:10.1016/j.cma.2008.05.003
[33] Gomez H, Hughes TJR, Nogueira X, Calo VM (2010) Isogeometric Analysis of the isothermal Navier-Stokes-Korteweg equations. Comput Methods Appl Mech Eng 199(25-28):1828-1840 · Zbl 1231.76191 · doi:10.1016/j.cma.2010.02.010
[34] Gomez H, Cueto-Felgueroso L, Juanes R (2013) Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium. J Comput Phys 238:217-239 · doi:10.1016/j.jcp.2012.12.018
[35] Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153-171 · Zbl 1349.82084 · doi:10.1016/j.jcp.2013.12.044
[36] Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian Finite Element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329-349 · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[37] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl Mech Eng 194(3941):4135-4195 · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[38] Ikeda CM (2012) Fluid-Structure Interactions. Implosions of shell structures and wave impact on a flat plate. PhD Thesis, University of Maryland · Zbl 1388.74039
[39] Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\[ \alpha\] α method for integrating the filtered Navier-Stokes equations with a stabilized Finite Element Method. Comput Methods Appl Mech Eng 190(34):305-319 · Zbl 0973.76048 · doi:10.1016/S0045-7825(00)00203-6
[40] Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73-94 · Zbl 0848.76036 · doi:10.1016/0045-7825(94)00077-8
[41] Kamran K, Rossi R, Oñate E, Idelshon SR (2013a) A compressible Lagrangian framework for modeling the fluid-structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23(02):339-367 · Zbl 1261.76016 · doi:10.1142/S021820251340006X
[42] Kamran K, Rossi R, Oñate E, Idelsohn SR (2013b) A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles. Comput Methods Appl Mech Eng 255:210-225 · Zbl 1297.76176 · doi:10.1016/j.cma.2012.11.018
[43] Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5):357-373 · Zbl 1227.74112 · doi:10.1016/j.cma.2009.01.022
[44] Liu J (2014) Thermodynamically consistent modeling and simulation of multiphase flows. PhD Thesis, The University of Texas at Austin · Zbl 0848.76036
[45] Liu J, Gomez H, Evans JA, Hughes TJR, Landis CM (2013) Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations. J Comput Phys 248:47-86 · Zbl 1349.76237 · doi:10.1016/j.jcp.2013.04.005
[46] Long CC, Marsden AL, Bazilevs Y (2013) Fluid-structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971-981 · Zbl 1388.74039 · doi:10.1007/s00466-013-0858-3
[47] Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014a) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911-919 · Zbl 1311.74041 · doi:10.1007/s00466-013-0931-y
[48] Long CC, Marsden AL, Bazilevs Y (2014b) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921-932 · Zbl 1314.74056 · doi:10.1007/s00466-013-0967-z
[49] Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D 43(1):44-62 · Zbl 0709.76001 · doi:10.1016/0167-2789(90)90015-H
[50] Rallu ASD (2009) A multiphase fluid-structure computational framework for underwater implosion problems. PhD Thesis, Stanford University · Zbl 1419.76439
[51] Sedzinski J, Biro M, Oswald A, Tinevez J-Y, Salbreux G, Paluch E (2011) Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476(7361):462-466 · doi:10.1038/nature10286
[52] Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci USA 109(18):6851-6856 · doi:10.1073/pnas.1203252109
[53] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[54] Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58-63 · Zbl 1110.74689 · doi:10.1115/1.1530635
[55] Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17(7):073001 · doi:10.1088/0965-0393/17/7/073001
[56] Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035-1045 · Zbl 1311.74044 · doi:10.1007/s00466-014-1017-1
[57] Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193-211 · doi:10.1007/s00466-014-0999-z
[58] Takizawa K, Tezduyar TE (2014) Space-time computation techniques with continuous representation in time (ST-C). Comput Mech 53(1):91-99 · doi:10.1007/s00466-013-0895-y
[59] Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-Time and ALE-VMS techniques for patient-specific cardiovascular Fluid-Structure Interaction modeling. Arch Comput Methods Eng 19(2):171-225 · Zbl 1354.92023 · doi:10.1007/s11831-012-9071-3
[60] Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013a) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307-338 · Zbl 1261.76013 · doi:10.1142/S0218202513400058
[61] Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013b) Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223-248 · Zbl 1261.76037
[62] Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013c) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52(6):1351-1364 · Zbl 1398.74097 · doi:10.1007/s00466-013-0880-5
[63] Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013d) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061-1073 · Zbl 1366.76106 · doi:10.1007/s00466-012-0790-y
[64] Takizawa K, Takagi H, Tezduyar TE, Torii R (2014a) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech 54:895-910 · Zbl 1398.74096 · doi:10.1007/s00466-013-0919-7
[65] Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014b) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437-2486 · Zbl 1296.76113 · doi:10.1142/S0218202514500250
[66] Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Oiseth O, Mathisen KM, Kostov N, McIntyre S (2014c) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng, published online. doi:10.1007/s11831-014-9113-0 · Zbl 1348.74104
[67] Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014d) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech, published online. doi:10.1007/s00466-014-1069-2 · Zbl 1309.74025
[68] Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014e) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54(5):1203-1220 · doi:10.1007/s00466-014-1052-y
[69] Takizawa K, Tezduyar TE, Buscher A, Asada S (2014f) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973-986 · Zbl 1311.74083 · doi:10.1007/s00466-014-1046-9
[70] Takizawa K, Tezduyar TE, Buscher A, Asada S (2014g) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54(4):955-971 · Zbl 1311.74045 · doi:10.1007/s00466-013-0935-7
[71] Takizawa K, Tezduyar TE, Kostov N (2014h) Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213-233 · doi:10.1007/s00466-014-0980-x
[72] Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014i) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53(1):1-15 · Zbl 1398.76129 · doi:10.1007/s00466-013-0888-x
[73] Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014j) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047-1053 · Zbl 1311.76158 · doi:10.1007/s00466-014-1049-6
[74] Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83-130 · Zbl 1039.76037 · doi:10.1007/BF02897870
[75] Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855-900 · Zbl 1144.74044 · doi:10.1002/fld.1430
[76] Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods-space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol. 246/AMD-Vol. 143. ASME, New York, pp 7-24 · Zbl 1169.74015
[77] Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27-36 · Zbl 0875.76267
[78] Tezduyar TE, Sathe S, Keedy R, Stein K (2006a) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17-18):2002-2027 · Zbl 1118.74052 · doi:10.1016/j.cma.2004.09.014
[79] Tezduyar TE, Sathe S, Stein K (2006b) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743-5753 · Zbl 1123.76035 · doi:10.1016/j.cma.2005.08.023
[80] Thiele U, Archer AJ, Robbins MJ, Gomez H, Knobloch E (2013) Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. Phys Rev E 87(4):042915 · doi:10.1103/PhysRevE.87.042915
[81] Turner SE (2007) Underwater implosion of glass spheres. J Acoust Soc Am 121(2):844-852 · doi:10.1121/1.2404921
[82] van der Waals JD (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20(2):200-244 · Zbl 1245.82006 · doi:10.1007/BF01011514
[83] Vilanova G, Colominas I, Gomez H (2013) Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015-1037 · doi:10.1002/cnm.2552
[84] Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for Isogeometric Analysis of blood flow. Comput Methods Appl Mech Eng 196(2930):2943-2959 · Zbl 1121.76076 · doi:10.1016/j.cma.2007.02.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.