×

On rotation deformation zones for finite-strain Cosserat plasticity. (English) Zbl 1325.74030

Summary: In this article, a numerical solution method for the finite-strain rate-independent Cosserat theory of crystal plasticity is developed. Based on a time-incremental minimization problem of the mechanical energy, a limited-memory Broyden-Fletcher-Goldfarb quasi-Newton method applied to a finite-difference discretization is proposed. First benchmark tests study the convergence to an analytic solution. Further simulations focus on the investigation of rotation localization zones, the bending of a rod, and a torsion experiment.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Software:

L-BFGS; LINPACK
Full Text: DOI

References:

[1] Aero E.L., Bulygin A.N., Kuvshinskii E.V.: Asymmetric hydrodynamics. Prikl. Mat. Mekh. 29, 297-308 (1965) · Zbl 0141.42603
[2] Aero E.L., Kuvshinskii E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2, 1272-1281 (1961)
[3] Allen S.J., de Silva C.N., Kline K.A.: Theory of simple deformable directed fluids. Phys. Fluids 12, 2551-2555 (1967) · Zbl 0173.27702 · doi:10.1063/1.1762075
[4] Altenbach H., Eremeyev V.A.: Generalized Continua from the Theory to Engineering Applications. Springer, CISM, New York (2013) · Zbl 1254.74005 · doi:10.1007/978-3-7091-1371-4
[5] Blesgen, T.: Deformation patterning in Cosserat plasticity. Model. Simul. Mater. Sci. Eng. 21, (2013). doi:10.1088/0965-0393/21/3/035001
[6] Blesgen T.: Deformation patterning in three-dimensional large-strain Cosserat plasticity. Mech. Res. Commun. 62(C), 37-43 (2014). doi:10.1016/j.mechrescom.2014.08.007 · Zbl 0611.73057
[7] Blesgen T., Luckhaus S.: The dynamics of transition layers in solids with discontinuous chemical potentials. Math. Methods Appl. Sci. 29, 525-536 (2006) · Zbl 1092.35036 · doi:10.1002/mma.685
[8] Capriz G.: Continua with Microstructure. Springer, New York (1989) · Zbl 0676.73001 · doi:10.1007/978-1-4612-3584-2
[9] Capriz, G., Giovine, P., Mariano P.M. (eds.): Mathematical models of granular matter, Lecture notes in Mathematics, Springer, New York (2008) · Zbl 1138.76005
[10] Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103-147 (2005) · Zbl 1064.74144
[11] Cosserat, E., Cosserat, F.: Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris (1909), (English version: Theory of deformable bodies, NASA TT F-11 561 (1968)) · JFM 40.0862.02
[12] Crumbach M., Goerdeler M., Gottstein G.: Modelling of recrystallisation textures in aluminium alloys: I Model set-up and integration. Acta Mater. 54, 3275-3289 (2006) · Zbl 1115.92048 · doi:10.1016/j.actamat.2006.03.017
[13] de Borst R., Sluys L.J.: Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng. 90, 805-827 (1991) · doi:10.1016/0045-7825(91)90185-9
[14] de Silva C.N., Tasi P.J.: A general theory of directed surfaces. Acta Mech. 18, 89-101 (1973) · Zbl 0272.73002 · doi:10.1007/BF01173460
[15] Diebels S.: A macroscopic description of the quasi-static behavior of granular materials based on the theory of porous media. Granul. Matter 2, 143-152 (2000) · doi:10.1007/s100359900034
[16] Dongarra J.J., Bunch J.R., Moler C.B., Stewart G.W.: LINPACK Users’ Guide. SIAM, Philadelphia (1979) · Zbl 0476.68025 · doi:10.1137/1.9781611971811
[17] Eremeyev V.A., Lebedev L.P., Altenbach H.: Foundations of Micropolar Mechanics. Springer, New York (2013) · Zbl 1257.74002 · doi:10.1007/978-3-642-28353-6
[18] Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295-323 (1958) · Zbl 0081.39303 · doi:10.1007/BF00298012
[19] Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909-923 (1966) · Zbl 0145.21302
[20] Eringen A.C.: Theory of thermomicrofluids. J. Math. Anal. Appl. 38, 480-496 (1972) · Zbl 0241.76012 · doi:10.1016/0022-247X(72)90106-0
[21] Eringen A.C.: Theories of nonlocal plasticity. Int. J. Eng. Sci. 21, 741-751 (1983) · Zbl 0519.73024 · doi:10.1016/0020-7225(83)90058-7
[22] Eringen, A. C.; Kafadar, C. B.; Eringen, A. C. (ed.), Polar field theories, 1-73 (1976), New York
[23] Eringen A.C.: A unified continuum theory of electrodynamics of liquid crystals. Int. J. Eng. Sci. 35, 1137-1157 (1997) · Zbl 0907.76008 · doi:10.1016/S0020-7225(97)00012-8
[24] Evans L.C., Soner H.M., Souganidis P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097-1123 (1992) · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[25] Forest S., Barbe F., Cailletaud G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37, 7105-7126 (2000) · Zbl 0998.74019 · doi:10.1016/S0020-7683(99)00330-3
[26] Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71-111 (2003) · Zbl 1064.74009 · doi:10.1007/s00707-002-0975-0
[27] Gomez J.D.: Numerical treatment of Cosserat based rate independent strain gradient plasticity theories. Ing. Cienc. 4, 99-128 (2008)
[28] Gourgiotis P.A., Georgiadis H.G.: Distributed dislocation approach for cracks in couple-stress elasticity: Shear Modes. Int. J. Fract. 147, 83-102 (2007) · Zbl 1260.74007 · doi:10.1007/s10704-007-9139-5
[29] Gammenoudis P., Tsakmakis C.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. A 461, 189-205 (2005) · doi:10.1098/rspa.2004.1377
[30] Green A.E., Naghdi P.M., Rivlin R.S.: Directors and multipolar displacements in continuum mechanics. Int. J. Eng. Sci. 2, 611-620 (1965) · Zbl 0131.21803 · doi:10.1016/0020-7225(65)90039-X
[31] Günther W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges. Gött. 10, 196-213 (1958) · Zbl 0102.17302
[32] Han W., Reddy D.: Plasticity: mathematical theory and numerical analysis. Springer, New York (1999) · Zbl 0926.74001
[33] Harris D., Grekova E.F.: A hyperbolic well-posed model for the flow of granular materials. J. Eng. Math. 52, 107-135 (2005) · Zbl 1080.74017 · doi:10.1007/s10665-004-3717-6
[34] Hill R.: The mathematical theory of plasticity. Oxford University Press, Oxford UK (1998) · Zbl 0923.73001
[35] Hirschberger, C.B.: A treatise on micromorphic continua. Theory, Homogenization, Computation. PhD thesis, University of Kaiserslautern (2008) · Zbl 0102.17302
[36] Khoei A.R., Yadegari S., Biabanaki S.O.R.: 3d finite element modeling of shear band localization via the micro-polar Cosserat continuum theory. Comput. Mater. Sci. 49, 720-733 (2010) · doi:10.1016/j.commatsci.2010.06.015
[37] Kotera H., Sawada M., Shima S.: Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. Int. J. Mech. Sci. 42, 129-145 (2000) · Zbl 0966.74023 · doi:10.1016/S0020-7403(98)00108-8
[38] Lubliner J.: Plasticity Theory. Dover publications, New York (2008) · Zbl 1201.74002
[39] Menzel A., Ekh M., Runesson K., Steinmann P.: A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage. Int. J. Plast. 21, 397-434 (2005) · Zbl 1089.74014 · doi:10.1016/j.ijplas.2003.12.006
[40] Maugin G.A.: Mechanics of Generalized Continua—One Hundred Years After the Cosserats. Springer publishing, New York (2010) · Zbl 1189.74008
[41] Miehe C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Struct. 35(30), 3859-3897 (1998) · Zbl 0935.74022 · doi:10.1016/S0020-7683(97)00175-3
[42] Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[43] Moré J., Thuente D.J.: Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307 (2004) · Zbl 0888.65072 · doi:10.1145/192115.192132
[44] Mugnai L., Luckhaus S.: On a mesoscopic many-body Hamiltonian describing elastic shears and dislocations. Contin. Mech. Thermodyn. 22, 251-290 (2010) · Zbl 1234.74012 · doi:10.1007/s00161-010-0142-0
[45] Neff P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574-594 (2006) · Zbl 1213.74032 · doi:10.1016/j.ijengsci.2006.04.002
[46] Neff P., Chelminski K.: Infinitesimal elastic-plastic Cosserat micropolar theory: modelling and global existence in the rate-independent case. Proc. R. Soc. Edinb. A 135, 1017-1039 (2005) · Zbl 1084.74004 · doi:10.1017/S030821050000425X
[47] Neff P., Chelminski K., Müller W., Müller W.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17, 1211-1239 (2007) · Zbl 1137.74012 · doi:10.1142/S021820250700225X
[48] Nocedal J.: On the limited memory method for large scale optimization. Math. Programm. B 45, 503-528 (1989) · Zbl 0696.90048 · doi:10.1007/BF01589116
[49] Oda, M., Iwashita, I. (eds.): Mechanics of Granular Materials: An Introduction. Taylor & Francis publishing, London (1999)
[50] Ortiz M., Repetto E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397-462 (1999) · Zbl 0964.74012 · doi:10.1016/S0022-5096(97)00096-3
[51] Papanicolopulos S.-A., Zervos A.: A three-dimensional C1 finite element for gradient elasticity. Int. J. Numer. Methods Eng. 77, 1396-1415 (2009) · Zbl 1156.74382 · doi:10.1002/nme.2449
[52] Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, New York (1999) · Zbl 0153.13602
[53] Reina C., Conti S.: Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F = FeFp. J. Mech. Phys. Solids 67, 40-61 (2014) · Zbl 1323.74018 · doi:10.1016/j.jmps.2014.01.014
[54] Rubin M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 0984.74003 · doi:10.1007/978-94-015-9379-3
[55] Rubin M.B.: Numerical solution of axisymmetric nonlinear elastic problems including shells using the theory of a Cosserat point. Comput. Mech. 36(4), 266-288 (2005) · Zbl 1100.74057 · doi:10.1007/s00466-005-0665-6
[56] Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition, Part I: Continuum formulation. Comp. Meth. Appl. Mech. Eng. 66, 199-219 (1988) · Zbl 0611.73057 · doi:10.1016/0045-7825(88)90076-X
[57] Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition, Part II: Computational aspects. Comp. Meth. Appl. Mech. Eng. 68, 1-31 (1988) · Zbl 0644.73043 · doi:10.1016/0045-7825(88)90104-1
[58] Slabaugh, G.: Computing Euler angles from a rotation matrix. Technical report (1999). Available online at http://www.soi.city.ac.uk/ sbbh653/publications/euler.pdf · Zbl 1092.35036
[59] Stojanovic, R. (ed.): Mechanics of Polar Continua, Theory and Applications. Springer, New York (1969)
[60] Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 17, 85-112 (1962) · Zbl 0112.16805
[61] Vardoulakis I., Sulem J.: Bifurcation analysis in geomechanics. Spon Press, London (1995) · Zbl 0900.73645
[62] Walsh S.D.C., Tordesillas A.: A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167, 145-169 (2004) · Zbl 1064.74048 · doi:10.1007/s00707-003-0072-z
[63] Weber G., Anand L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173-202 (1990) · Zbl 0731.73031 · doi:10.1016/0045-7825(90)90131-5
[64] Yeremeyev V.A., Zubov L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755-767 (1999) · Zbl 0942.76005 · doi:10.1016/S0021-8928(99)00096-9
[65] Zeghadi A., Forest S., Gourgues A.-F., Bouaziz O.: Cosserat continuum modelling of grain size effects in metal polycrystals. Proc. Appl. Math. Mech. 5, 79-82 (2005) · Zbl 1391.74046 · doi:10.1002/pamm.200510021
[66] Zhang H.W., Wang H., Chen B.S., Xie Z.Q.: Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle. Comput. Methods Appl. Mech. Eng. 197, 741-755 (2008) · Zbl 1169.74330 · doi:10.1016/j.cma.2007.09.003
[67] Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635-648 (1976) · doi:10.1016/0020-7683(76)90010-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.