×

Weak convergence of a mass-structured individual-based model. (English) Zbl 1325.60139

Appl. Math. Optim. 72, No. 1, 37-73 (2015); erratum ibid. 72, No. 1, 75-76 (2015).
Summary: We propose a model of chemostat where the bacterial population is individual-based, each bacterium is explicitly represented and has a mass evolving continuously over time. The substrate concentration is represented as a conventional ordinary differential equation. These two components are coupled with the bacterial consumption. Mechanisms acting on the bacteria are explicitly described (growth, division and washout). Bacteria interact via consumption. We set the exact Monte Carlo simulation algorithm of this model and its mathematical representation as a stochastic process. We prove the convergence of this process to the solution of an integro-differential equation when the population size tends to infinity. Finally, we propose several numerical simulations.

MSC:

60J85 Applications of branching processes
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F05 Central limit and other weak theorems
45J05 Integro-ordinary differential equations
92D25 Population dynamics (general)
65C05 Monte Carlo methods
37N25 Dynamical systems in biology
Full Text: DOI

References:

[1] Allen, L.J.: An Introduction to Stochastic Processes with Biology Applications. Prentice Hall, Upper Saddle River (2003) · Zbl 1205.60001
[2] Billingsley, P.: Convergence of Probability Measures. John Wiley & Sons, New York (1968) · Zbl 0172.21201
[3] Campillo, F., Fritsch, C.: A mass-structured individual-based model of the chemostat: convergence and simulation. ArXiv Mathematics e-prints. arXiv:1308.2411 [math.ST] (2013) · Zbl 1325.60139
[4] Campillo, F., Joannides, M., Larramendy-Valverde, I.: Stochastic modeling of the chemostat. Ecol. Model. 222(15), 2676-2689 (2011) · Zbl 1161.65307 · doi:10.1016/j.ecolmodel.2011.04.027
[5] Champagnat, N.: A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116(8), 1127-1160 (2006) · Zbl 1100.60055 · doi:10.1016/j.spa.2006.01.004
[6] Champagnat, N., Jabin, P.-E., Méléard, S.: Adaptation in a stochastic multi-resources chemostat model. J. Math. Pure. Appl. 101(6), 755-788 (2014) · Zbl 1322.92052
[7] Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, 2nd edn. Springer, New York (2003) · Zbl 1026.60061
[8] Daoutidis, P., Henson, M.A.: Dynamics and control of cell populations in continuous bioreactors. AIChE Symp. Ser. 326, 274-289 (2002)
[9] Donald, A.; Hennequin, P-L (ed.), Dawson. Measure-valued markov processes, No. 1541, 1-250 (1993), Berlin · Zbl 0799.60080 · doi:10.1007/BFb0084190
[10] DeAngelis, Donald L., Gross, Louis J. (eds.): Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman and Hall, New York (1992)
[11] Diekmann, O., Jabin, P.-E., Mischler, S., Perthame, B.: The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67(4), 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[12] Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. John Wiley & Sons, New York (1986) · Zbl 0592.60049 · doi:10.1002/9780470316658
[13] Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Kutoviy. Individual based model with competition in spatial ecology. SIAM J. Math. Anal. 41, 297-317 (2009) · Zbl 1185.60110 · doi:10.1137/080719376
[14] Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880-1919 (2004) · Zbl 1060.92055 · doi:10.1214/105051604000000882
[15] Fredrickson, A.G., Ramkrishna, D., Tsuchiya, H.M.: Statistics and dynamics of procaryotic cell populations. Math. Biosci. 1(3), 327-374 (1967) · Zbl 0152.18901 · doi:10.1016/0025-5564(67)90008-9
[16] Henson, M.A.: Dynamic modeling and control of yeast cell populations in continuous biochemical reactors. Comput. Chem. Eng. 27(8-9), 1185-1199 (2003) · doi:10.1016/S0098-1354(03)00046-2
[17] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha, Tokyo (1981) · Zbl 0495.60005
[18] Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20-65 (1986) · Zbl 0595.60008 · doi:10.2307/1427238
[19] Méléard, S., Roelly, S.: Sur les convergences étroite ou vague de processus à valeurs mesures. C. R. Acad. Sci. Paris Sér. 1(317), 785-788 (1993) · Zbl 0781.60071
[20] Mirrahimi, S., Perthame, B., Wakano, J.Y.: Direct competition results from strong competition for limited resource. J. Math. Biol. 68(4), 931-949 (2014) · Zbl 1293.35346
[21] Mirrahimi, S., Perthame, B., Wakano, J.Y.: Evolution of species trait through resource competition. J. Math. Biol. 64(7), 1189-1223 (2012) · Zbl 1279.92060 · doi:10.1007/s00285-011-0447-z
[22] Monod, J.: La technique de culture continue, théorie et applications. Ann. Inst. Pasteur 79(4), 390-410 (1950)
[23] Novick, A., Szilard, L.: Description of the chemostat. Science 112(2920), 715-716 (1950) · doi:10.1126/science.112.2920.715
[24] Ramkrishna, D.: Statistical Models of Cell Populations. Advances in Biochemical Engineering, vol. 11, pp. 1-47. Springer, Berlin (1979) · Zbl 0226.92010
[25] Ramkrishna, D.: Population Balances: Theory and Applications to Particulate Systems in Engineering. Elsevier Science, San Diego (2000)
[26] Roelly-Coppoletta, S.: A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17(1-2), 43-65 (1986) · Zbl 0598.60088 · doi:10.1080/17442508608833382
[27] Rüdiger, B., Ziglio, G.: Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces. Stoch. Int. J. Probab. Stoch. Process. 78(6), 377-410 (2006) · Zbl 1117.60056 · doi:10.1080/17442500600976137
[28] Smith, H.L., Waltman, P.E.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995) · Zbl 0860.92031 · doi:10.1017/CBO9780511530043
[29] Tran, V.C.: Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. PhD thesis, Université de Nanterre - Paris X (2006)
[30] Tran, V.C.: Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM 12, 345-386 (2008) · Zbl 1187.92071 · doi:10.1051/ps:2007052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.