×

The strict-weak lattice polymer. (English) Zbl 1323.82059

Summary: We introduce the strict-weak polymer model, and show the KPZ universality of the free energy fluctuation of this model for a certain range of parameters. Our proof relies on the observation that the discrete time geometric \(q\)-TASEP model, studied earlier by A. Borodin and I. Corwin [Int. Math. Res. Not. 2015, No. 2, 499–537 (2015; Zbl 1310.82030)], scales to this polymer model in the limit \(q\to 1\). This allows us to exploit the exact results for geometric \(q\)-TASEP to derive a Fredholm determinant formula for the strict-weak polymer, and in turn perform rigorous asymptotic analysis to show KPZ scaling and GUE Tracy-Widom limit for the free energy fluctuations. We also derive moments formulae for the polymer partition function directly by Bethe ansatz, and identify the limit of the free energy using a stationary version of the polymer model.

MSC:

82D60 Statistical mechanics of polymers
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics
82C23 Exactly solvable dynamic models in time-dependent statistical mechanics
44A10 Laplace transform

Citations:

Zbl 1310.82030

References:

[1] Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \[1+11+1\] dimensions. Commun. Pure Appl. Math. 64(4), 466-537 (2011) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[2] Barraquand, G., Corwin, I.: Random-walk in beta-distributed random environment. arXiv:1503.04117 (2015) · Zbl 1382.60125
[3] Borodin, A., Corwin, I.: Discrete time q-TASEPs. Int. Math. Res. Notices (2013). doi:10.1093/imrn/rnt206 · Zbl 1310.82030
[4] Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158(1-2), 225-400 (2014) · Zbl 1291.82077 · doi:10.1007/s00440-013-0482-3
[5] Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in \[1+11+1\] dimension. Commun. Pure Appl. Math. 67(7), 1129-1214 (2014) · Zbl 1295.82035 · doi:10.1002/cpa.21520
[6] Borodin, A., Corwin, I., Ferrari, P., Veto, B.: Height fluctuations for the stationary kpz equation. arXiv:1407.6977 (2014) · Zbl 1332.82068
[7] Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the q-boson particle system. Compos. Math. arXiv:1308.3475 (2013) · Zbl 1314.05212
[8] Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. arXiv:1407.8534 (2014) · Zbl 1330.82017
[9] Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324(1), 215-232 (2013) · Zbl 1479.82112 · doi:10.1007/s00220-013-1750-x
[10] Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke Math. J. 163(3), 513-563 (2014) · Zbl 1288.82022 · doi:10.1215/00127094-2410289
[11] Matveev, K., Petrov, L.: \[q\] q-Randomized Robinson-Schensted-Knuth correspondences and random polymers. arXiv:1504.00666 (2015) · Zbl 1381.60030
[12] O’Connell, N.: Directed percolation and tandem queues. Technical Report STP-99-12, DIAS (1999)
[13] O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437-458 (2012) · Zbl 1245.82091 · doi:10.1214/10-AOP632
[14] O’Connell, N., Ortmann, J.: Tracy-Widom asymptotics for a random polymer model with gamma-distributed weights. arXiv:1408.5326 (2014) · Zbl 1327.60026
[15] Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40(1), 19-73 (2012) · Zbl 1254.60098 · doi:10.1214/10-AOP617
[16] Thiery, T., Le Doussal, P.: Log-gamma directed polymer with fixed endpoints via the replica bethe ansatz. arXiv:1406.5963 (2014) · Zbl 1456.82962
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.