×

Use of Gestalt theory and random sets for automatic detection of linear geological features. (English) Zbl 1323.62073

Summary: This paper presents the calibration and application of a Gestalt-based line segment method for automatic geological lineament detection from remote sensing images. This method involves estimation of the scale factor, the angle tolerance and a threshold on the false alarm rate. It identifies major lineaments as objects characterized by two edges on the image, which appear as transitions from dark to bright and vice versa. These objects were modelled as random sets with parameters drawn from their distributions. Following the geometry of detected segments, a novel validation method assesses the accuracy with respect to a linear vector reference. The methodology was applied to a study area in Kenya where lineaments are prominent in the landscape and are well identifiable from an ASTER image. Error rates were based on distance and local orientation, and the study showed that the existence and size of the objects were sensitive to parameter variation. False detection rate and missing detection rate were both equal to 0.50, which is better than values equal to 0.65 and 0.63, observed using the Canny edge detection. Modelling the uncertainty of geological lineaments with random sets further showed that no core set is formed, indicating that there is an inherent uncertainty in their existence and position, and that the variance is relatively high. Comparing the test area with four areas in the same region showed similar results. Despite some shortcomings in identifying full lineaments from partially observed lineaments, it is concluded that the procedure in this paper is well able to automatically extract lineaments from a remote sensing image and validate their existence.

MSC:

62H35 Image analysis in multivariate analysis
62P12 Applications of statistics to environmental and related topics
86A60 Geological problems

References:

[1] Achauer U, Masson F (2002) Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities. Tectonophysics 358:17-37 · doi:10.1016/S0040-1951(02)00415-8
[2] Awrangjeb M, Ravanbakhsh M, Fraser CS (2010) Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS J Photogramm Remote Sens 65(5):457-467 · doi:10.1016/j.isprsjprs.2010.06.001
[3] Batschelet E (1981) Circular statistics in biology, vol 371. Academic Press, London · Zbl 0524.62104
[4] Burns J, Hanson AR, Riseman EM (1986) Extracting straight lines. IEEE Trans Pattern Anal Mach Intell PAMI-8(4):425-455 · doi:10.1109/TPAMI.1986.4767808
[5] Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Analy Mach Intell 6:679-698 · doi:10.1109/TPAMI.1986.4767851
[6] Chandrasiri Ekneligoda T, Henkel H (2010) Interactive spatial analysis of lineaments. Comput Geosci 36(8):1081-1090 · doi:10.1016/j.cageo.2010.01.009
[7] Clark C, Wilson C (1994) Spatial analysis of lineaments. Comput Geosci 20(7-8):1237-1258 · doi:10.1016/0098-3004(94)90073-6
[8] Davis JC, Sampson RJ (2002) Statistics and data analysis in geology, vol 3. Wiley, New York
[9] Desolneux A, Moisan L, Morel JM (2000) Meaningful alignments. Int J Comput Vis 40(1):7-23 · Zbl 1012.68701 · doi:10.1023/A:1026593302236
[10] Desolneux A, Moisan L, Morel JM (2001) Edge detection by Helmholtz principle. J Math Imaging Vis 14(3):271-284 · Zbl 0988.68819 · doi:10.1023/A:1011290230196
[11] Desolneux A, Moisan L, Morel JM (2003) Computational gestalts and perception thresholds. J Physiol Paris 97(2):311-324 · doi:10.1016/j.jphysparis.2003.09.006
[12] ERS ERI (2014) Sketch maps of extensional structures. http://www.europlanet-ri.eu/
[13] ERSDAC (2005) Aster user’s guide ver.4.0
[14] Grompone von Gioi R, Jakubowicz J, Morel JM, Randall G (2012) LSD: a line segment detector. Image Process On Line. doi:10.5201/ipol.2012.gjmr-lsd. http://www.ipol.im/pub/art/2012/gjmr-lsd/
[15] Glasbey CA, Horgan GW (1995) Image analysis for the biological sciences, vol 1. Wiley, Chichester · Zbl 0876.92001
[16] Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11-27 · doi:10.1016/j.enggeo.2004.10.004
[17] Goodchild MF, Jeansoulin R (1998) Statistical representation of relative positional uncertainty for geographical linear features. In: Data quality in geographic information: from error to uncertainty. Hermes, Paris pp 87-96
[18] Guru D, Shekar B, Nagabhushan P (2004) A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognit Lett 25(1):1-13. doi:10.1016/j.patrec.2003.08.007 · Zbl 1161.68771
[19] Hashim M, Ahmad S, Johari MAM, Pour AB (2013) Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Adv Space Res 51(5):874-890 · doi:10.1016/j.asr.2012.10.004
[20] Heipke C, Steger C, Multhammer R (1995) A hierarchical approach to automatic road extraction from aerial imagery. In: Proceedings of the SPIE The International Society for Optical Engineering, p 222
[21] Hobbs WH (1904) Lineaments of the Atlantic border region. Geol Soc Am Bull 15:480-506
[22] Hung L, Batelaan O, De Smedt F (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam, vol 5983
[23] Jordan G, Schott B (2005) Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sens Environ 94(1):31-38 · doi:10.1016/j.rse.2004.08.013
[24] Juneja M, Sandhu PS (2009) Performance evaluation of edge detection techniques for images in spatial domain. Methodology 1(5):614-621
[25] Khomyakov M (2012) Comparative evaluation of linear edge detection methods. Pattern Recognit Image Anal 22(2):291-302 · doi:10.1134/S1054661812020058
[26] Kit O, Lüdeke M (2013) Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery. ISPRS J Photogramm Remote Sens 83:130-137 · doi:10.1016/j.isprsjprs.2013.06.009
[27] Koike K, Nagano S, Ohmi M (1995) Lineament analysis of satellite images using a segment tracing algorithm (STA). Comput Geosci 21(9):1091-1104 · doi:10.1016/0098-3004(95)00042-7
[28] Lee T, Moon W (2002) Lineament extraction from Landsat TM, JERS-1 SAR, and DEM for geological applications, vol 6, pp 3276-3278
[29] Mardia KV, Jupp PE (2009) Directional statistics, vol 494. Wiley, New York · Zbl 0935.62065
[30] Marghany M, Hashim M (2010) Lineament mapping using multispectral remote sensing satellite data. Int J Phys Sci 5(10):1501-1507
[31] Marghany M, Mansor S, Hashim M (2009) Geologic mapping of United Arab Emirates using multispectral remotely sensed data. Am J Eng Appl Sci 2(2):476 · doi:10.3844/ajeassp.2009.476.480
[32] Mena JB, Malpica JA (2005) An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery. Pattern Recognit Lett 26(9):1201-1220 · doi:10.1016/j.patrec.2004.11.005
[33] Molchanov I (2005) Expectations of random sets. In: Theory of random sets, probability and its applications. doi:10.1007/1-84628-150-4_2 · Zbl 1109.60001
[34] Mostafa ME, Bishta AZ (2005) Significance of lineament patterns in rock unit classification and designation: a pilot study on the Gharib-Dara area, Northern Eastern Desert, Egypt. Int J Remote Sens 26(7):1463-1475 · doi:10.1080/01431160410001705088
[35] O’Leary DW, Friedman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new standards for old terms. Geol Soc Am Bull 87(10):1463-1469. doi:10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2
[36] Pal S, Majumdar T, Bhattacharya A (2006) Extraction of linear and anomalous features using ERS SAR data over Singhbhum Shear Zone, Jharkhand using fast Fourier transform. Int J Remote Sens 27(20):4513-4528 · doi:10.1080/01431160600658172
[37] Papazachos B, Scordilis E, Panagiotopoulos D, Papazachos C, Karakaisis G (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull Geol Soc Greece 36:1482-1489
[38] Ramli M, Yusof N, Yusoff M, Juahir H, Shafri H (2010) Lineament mapping and its application in landslide hazard assessment: a review. Bull Eng Geol Environ 69(2):215-233. doi:10.1007/s10064-009-0255-5 · doi:10.1007/s10064-009-0255-5
[39] Singhal B, Gupta R (2010) Fractures and discontinuities. In: Applied hydrogeology of fractured rocks. doi:10.1007/978-90-481-8799-7-2
[40] Solomon S, Ghebreab W (2006) Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J Afr Earth Sci 46(4):371-378 · doi:10.1016/j.jafrearsci.2006.06.007
[41] Soto-Pinto C, Arellano-Baeza A, Sánchez G (2013) A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Comput Geosci 57(0):93-103. doi:10.1016/j.cageo.2013.03.019
[42] Thornton M, Atkinson PM, Holland D (2007) A linearised pixel-swapping method for mapping rural linear land cover features from fine spatial resolution remotely sensed imagery. Comput Geosci 33(10):1261-1272 · doi:10.1016/j.cageo.2007.05.010
[43] Turker M, Kok EH (2013) Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping. ISPRS J Photogramm Remote Sens 79:106-121 · doi:10.1016/j.isprsjprs.2013.02.009
[44] Wang J, Howarth P (1990) Use of the Hough transform in automated lineament. IEEE Trans Geosci Remote Sens 28(4):561-567. doi:10.1109/TGRS.1990.572949 · doi:10.1109/TGRS.1990.572949
[45] Wladis D (1999) Automatic lineament detection using digital elevation models with second derivative filters. Photogramm Eng Remote Sens 65:453-458
[46] Zhao X, Stein A, Chen X, Zhang X (2011) Quantification of extensional uncertainty of segmented image objects by random sets. IEEE Trans Geosci Remote Sens 49(7):2548-2557. doi:10.1109/TGRS.2011.2109064 · doi:10.1109/TGRS.2011.2109064
[47] Ziou D, Tabbone S (1998) Edge detection techniques—an overview. Int J Pattern Recognit Image Anal 8:537-559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.