×

Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order. (English) Zbl 1323.60033

Summary: Building on the inequalities for homogeneous tetrahedral polynomials in independent Gaussian variables due to R. Latał{a} [Ann. Probab. 34, No. 6, 2315–2331 (2006; Zbl 1119.60015)], we provide a concentration inequality for not necessarily Lipschitz functions \(f:\mathbb R^n \to \mathbb R\) with bounded derivatives of higher orders, which holds when the underlying measure satisfies a family of Sobolev type inequalities \[ \| g- \mathbb Eg\| _p \leq C(p)\| \nabla g\| _p. \] Such Sobolev type inequalities hold, e.g., if the underlying measure satisfies the log-Sobolev inequality (in which case \(C(p) \leq C\sqrt{p}\)) or the Poincaré inequality (then \(C(p) \leq Cp\)). Our concentration estimates are expressed in terms of tensor-product norms of the derivatives of \(f\). When the underlying measure is Gaussian and \(f\) is a polynomial (not necessarily tetrahedral or homogeneous), our estimates can be reversed (up to a constant depending only on the degree of the polynomial). We also show that for polynomial functions, analogous estimates hold for arbitrary random vectors with independent sub-Gaussian coordinates. We apply our inequalities to general additive functionals of random vectors (in particular linear eigenvalue statistics of random matrices) and the problem of counting cycles of fixed length in Erdős-Rényi random graphs, obtaining new estimates, optimal in a certain range of parameters.

MSC:

60E15 Inequalities; stochastic orderings
46N30 Applications of functional analysis in probability theory and statistics
60B20 Random matrices (probabilistic aspects)
05C80 Random graphs (graph-theoretic aspects)

Citations:

Zbl 1119.60015

References:

[1] Adamczak, R.: Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses. Bull. Pol. Acad. Sci. Math. 53(2), 221-238 (2005) · Zbl 1105.60016 · doi:10.4064/ba53-2-10
[2] Adamczak, R., Latała, R.: Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails. Ann. Inst. H. Poincar Probab. Stat. 48(4), 1103-1136 (2012) · Zbl 1263.60016 · doi:10.1214/11-AIHP441
[3] Aida, S., Stroock, D.: Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1(1), 75-86 (1994) · Zbl 0862.60064 · doi:10.4310/MRL.1994.v1.n1.a9
[4] Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010) · Zbl 1184.15023
[5] Arcones, M.A., Giné, E.: On decoupling, series expansions, and tail behavior of chaos processes. J. Theor. Probab. 6(1), 101-122 (1993) · Zbl 0785.60023 · doi:10.1007/BF01046771
[6] Bai, Z., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics, 2nd edn. Springer, New York (2010) · Zbl 1301.60002 · doi:10.1007/978-1-4419-0661-8
[7] Bakry, D., Émery, M.: Inégalités de Sobolev pour un semi-groupe symétrique. C. R. Acad. Sci. Paris Sér. I Math. 301(8), 411-413 (1985) · Zbl 0802.60019
[8] Barthe, F., Milman, E.: Transference principles for log-Sobolev and spectral-gap with applications to conservative spin systems. Commun. Math. Phys. 323(2), 575-625 (2013) · Zbl 1297.82011 · doi:10.1007/s00220-013-1782-2
[9] Bobkov, S., Ledoux, M.: Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107(3), 383-400 (1997) · Zbl 0878.60014 · doi:10.1007/s004400050090
[10] Bobkov, S.G.: Remarks on the growth of \[L^p\] Lp-norms of polynomials. In: Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., pp 27-35. Springer, Berlin (2000) · Zbl 0976.46005
[11] Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1-28 (1999) · Zbl 0924.46027 · doi:10.1006/jfan.1998.3326
[12] Bobkov, S.G., Götze, F., Tikhomirov, A.N.: On concentration of empirical measures and convergence to the semi-circle law. J. Theor. Probab. 23(3), 792-823 (2010) · Zbl 1247.60010 · doi:10.1007/s10959-010-0286-7
[13] Bonami, A.: Étude des coefficients de Fourier des fonctions de \[L^p(G)\] Lp(G). Ann. Inst. Fourier (Grenoble), 20(fasc. 2):335-402 (1971), 1970 · Zbl 0195.42501
[14] Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30(2), 207-216 (1975) · Zbl 0292.60004 · doi:10.1007/BF01425510
[15] Borell, C.: On the Taylor series of a Wiener polynomial. Seminar Notes on multiple stochastic integration, polynomial chaos and their integration. Case Western Reserve University, Cleveland (1984) · Zbl 1239.60012
[16] Borodin, A.N., Ibragimov, I.A.: Limit theorems for functionals of random walks. Trudy Mat. Inst. Steklov. (1995) (Predel. Teoremy dlya Funktsional. ot Sluchain. Bluzh.), p. 286 (1994) · Zbl 0840.60002
[17] Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.: Moment inequalities for functions of independent random variables. Ann. Probab. 33(2), 514-560 (2005) · Zbl 1074.60018 · doi:10.1214/009117904000000856
[18] Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities using the entropy method. Ann. Probab. 31(3), 1583-1614 (2003) · Zbl 0579.60079 · doi:10.1214/aop/1055425791
[19] Bourgain, J.: On the distribution of polynomials on high-dimensional convex sets. In: Geometric aspects of functional analysis (1989-90) volume 1469 of Lecture Notes in Math. pp 127-137. Springer, Berlin (1991) · Zbl 0773.46013
[20] Caffarelli, L.A.: Monotonicity properties of optimal transportation and the FKG and related inequalities. Commun. Math. Phys. 214(3), 547-563 (2000) · Zbl 0978.60107 · doi:10.1007/s002200000257
[21] Carbery, A., Wright, J.: Distributional and \[L^q\] Lq norm inequalities for polynomials over convex bodies in \[\mathbb{R}^nRn\]. Math. Res. Lett. 8(3), 233-248 (2001) · Zbl 0989.26010 · doi:10.4310/MRL.2001.v8.n3.a1
[22] Chatterjee, S.: The missing log in large deviations for triangle counts. Random Struct. Algorithms 40(4), 437-451 (2012) · Zbl 1246.05140 · doi:10.1002/rsa.20381
[23] Chatterjee, S., Dembo, A.: Nonlinear large deviations. http://arxiv.org/abs/1401.3495 January (2014) · Zbl 1356.60045
[24] de la Peña, V.H., Giné, E.: Decoupling. From Dependence to Independence, Randomly Stopped Processes. \[UU\]-Statistics and Processes. Martingales and Beyond, Probability and its Applications. Springer, New York (1999)
[25] de la Peña, V.H., Montgomery-Smith, S.J.: Decoupling inequalities for the tail probabilities of multivariate \[UU\]-statistics. Ann. Probab. 23(2), 806-816 (1995) · Zbl 0827.60014 · doi:10.1214/aop/1176988291
[26] DeMarco, B., Kahn, J.: Tight upper tail bounds for cliques. Random Struct. Algorithms 41(4), 469-487 (2012) · Zbl 1255.05172 · doi:10.1002/rsa.20440
[27] DeMarco, B., Kahn, J.: Upper tails for triangles. Random Struct. Algorithms 40(4), 452-459 (2012) · Zbl 1246.05142 · doi:10.1002/rsa.20382
[28] Gentil, I., Guillin, A., Miclo, L.: Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Relat. Fields 133(3), 409-436 (2005) · Zbl 1080.26010 · doi:10.1007/s00440-005-0432-9
[29] Gluskin, E.D., Kwapień, S.: Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Math. 114(3), 303-309 (1995) · Zbl 0834.60050
[30] Guillin, A., Joulin, A.: Measure concentration through non-Lipschitz observables and functional inequalities. Electron. J. Probab. 18.65, 26 (2013) · Zbl 1282.60024
[31] Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119-136 (2000) · Zbl 1051.60020 · doi:10.1214/ECP.v5-1026
[32] Hanson, D.L., Wright, F.T.: A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42, 1079-1083 (1971) · Zbl 0216.22203 · doi:10.1214/aoms/1177693335
[33] Hitczenko, P., Montgomery-Smith, S.J., Oleszkiewicz, K.: Moment inequalities for sums of certain independent symmetric random variables. Studia Math. 123(1), 15-42 (1997) · Zbl 0967.60018
[34] Janson, S.: Gaussian Hilbert Spaces, Volume 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1997) · Zbl 0887.60009 · doi:10.1017/CBO9780511526169
[35] Janson, S., Oleszkiewicz, K., Ruciński, A.: Upper tails for subgraph counts in random graphs. Isr. J. Math. 142, 61-92 (2004) · Zbl 1055.05136 · doi:10.1007/BF02771528
[36] Janson, S., Ruciński, A.: The infamous upper tail. Probabilistic methods in combinatorial optimization. Random Struct. Algorithms 20(3), 317-342 (2002) · Zbl 0996.60023 · doi:10.1002/rsa.10031
[37] Kim, J.H., Vu, V.H.: Concentration of multivariate polynomials and its applications. Combinatorica 20(3), 417-434 (2000) · Zbl 0969.60013 · doi:10.1007/s004930070014
[38] Kim, J.H., Vu, V.H.: Divide and conquer martingales and the number of triangles in a random graph. Random Struct. Algorithms 24(2), 166-174 (2004) · Zbl 1041.60042 · doi:10.1002/rsa.10113
[39] Klartag, B.: Concentration of measures supported on the cube. Isr. J. Math. 203(1), 59-80 (2014). doi:10.1007/s11856-013-0072-1 · Zbl 1357.60020
[40] Kwapień, S.: Decoupling inequalities for polynomial chaos. Ann. Probab. 15(3), 1062-1071 (1987) · Zbl 0622.60026 · doi:10.1214/aop/1176992081
[41] Kwapień, S., Szulga, J.: Hypercontraction methods in moment inequalities for series of independent random variables in normed spaces. Ann. Probab. 19(1), 369-379 (1991) · Zbl 0718.60044 · doi:10.1214/aop/1176990550
[42] Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications. Birkhäuser Boston Inc., Boston (1992) · Zbl 0751.60035 · doi:10.1007/978-1-4612-0425-1
[43] Latała, R.: Tail and moment estimates for some types of chaos. Studia Math. 135(1), 39-53 (1999) · Zbl 0935.60009
[44] Latała, R.: Estimates of moments and tails of Gaussian chaoses. Ann. Probab. 34(6), 2315-2331 (2006) · Zbl 1304.62088 · doi:10.1214/009117906000000421
[45] Latała, R., Łochowski, R.: Moment and tail estimates for multidimensional chaos generated by positive random variables with logarithmically concave tails. Stochastic inequalities and applications volume 56 of Progr. Probab, pp. 77-92. Birkhäuser, Basel (2003) · Zbl 1037.60016
[46] Ledoux, M.: The Concentration of Measure Phenomenon, Volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001) · Zbl 0995.60002
[47] Ledoux, M., Oleszkiewicz, K.: On measure concentration of vector-valued maps. Bull. Pol. Acad. Sci. Math. 55(3), 261-278 (2007) · Zbl 1125.60016 · doi:10.4064/ba55-3-7
[48] Łochowski, R.: Moment and tail estimates for multidimensional chaoses generated by symmetric random variables with logarithmically concave tails. In Approximation and probability, volume 72 of Banach Center Publ. pp. 161-176. Polish Acad. Sci., Warsaw (2006) · Zbl 1105.60018
[49] Lubetzky, E., Zhao, Y.: On the variational problem for upper tails in sparse random graphs. http://arxiv.org/abs/1402.6011 February (2014) · Zbl 1364.05063
[50] Lytova, A., Pastur, L.: On asymptotic behavior of multilinear eigenvalue statistics of random matrices. J. Stat. Phys. 133(5), 871-882 (2008) · Zbl 1161.82010 · doi:10.1007/s10955-008-9644-6
[51] Mehta, M.L.: Random Matrices, Volume 142 of Pure and Applied Mathematics (Amsterdam), 3rd edn. Elsevier/Academic Press, Amsterdam (2004) · Zbl 1107.15019
[52] Milman, E.: On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177(1), 1-43 (2009) · Zbl 1181.52008 · doi:10.1007/s00222-009-0175-9
[53] Milman, E.: Properties of isoperimetric, functional and transport-entropy inequalities via concentration. Probab. Theory Relat. Fields 152(3-4), 475-507 (2012) · Zbl 1239.60012 · doi:10.1007/s00440-010-0328-1
[54] Nazarov, F., Sodin, M., Vol \[^{\prime }\]′berg, A.: The geometric Kannan-Lovász-Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions. Algebra i Analiz, 14(2):214-234, (2002) · Zbl 1030.60040
[55] Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211-227 (1973) · Zbl 0273.60079 · doi:10.1016/0022-1236(73)90025-6
[56] Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices, Volume 171 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2011) · Zbl 1244.15002
[57] Pisier, G.: Probabilistic methods in the geometry of Banach spaces. Probability and analysis (Varenna. 1985), volume 1206 of Lecture Notes in Math, pp. 167-241. Springer, Berlin (1986) · Zbl 0606.60008
[58] Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry, Volume 94 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1989) · Zbl 0698.46008 · doi:10.1017/CBO9780511662454
[59] Schudy, W., Sviridenko, M.: Bernstein-like Concentration and Moment Inequalities for Polynomials of Independent Random Variables: Multilinear Case. http://arxiv.org/abs/1109.5193 September (2011) · Zbl 1423.60039
[60] Schudy, W., Sviridenko, M.: Concentration and Moment Inequalities for Polynomials of Independent Random Variables.http://arxiv.org/abs/1104.4997 April (2011) · Zbl 1423.60039
[61] Skorohod, A.V., Slobodenjuk, N.P.: Predelnye teoremy dlya sluchainykh bluzhdanii. Izdat. “Naukova Dumka”, Kiev, (1970) · Zbl 0862.60064
[62] Sudakov, V.N., Cirel \[^{\prime }\]′son, B.S.: Extremal properties of half-spaces for spherically invariant measures. Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). 41, 14-24, 165, (1974) · Zbl 0351.28015
[63] Talagrand, M.: An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities. Proc. Am. Math. Soc. 104(3), 905-909 (1988) · Zbl 0691.60015 · doi:10.1090/S0002-9939-1988-0964871-7
[64] Talagrand, M.: New concentration inequalities in product spaces. Invent. Math. 126(3), 505-563 (1996) · Zbl 0893.60001 · doi:10.1007/s002220050108
[65] Vu, V.H.: Concentration of non-Lipschitz functions and applications. Probabilistic methods in combinatorial optimization. Random Struct. Algorithms 20(3), 262-316 (2002) · Zbl 0999.60027 · doi:10.1002/rsa.10032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.