×

Radial symmetric elements and the Bargmann transform. (English) Zbl 1323.35154

A theorem concerning radial symmetric elements under the Bargmann transform is stated and proved. It is shown that for any \(f\in S^{'}_{1/2}(\mathbb R^d)\) the following conditions are equivalent. \(1^{\circ}\) \(f\) is radial symmetric; \(2^{\circ}\) if \(U\) is unitary on \(\mathbb R^d\), then \((\mathfrak{V}f)(Uz)=(\mathfrak{V}f)(z)\); \(3^{\circ}\) \((\mathfrak{V}f)(z)=F_0(\langle z, z\rangle)\), for some entire function \(F_0\) on \(C\); \(4^{\circ}\) \((f,h_{\alpha})=0\) for every \(\alpha=(\alpha_1,\ldots,\alpha_d)\in N^d\) such that at least one of \(\alpha_j\) is odd, and \(\dfrac{\alpha !}{\sqrt{(2\alpha)!}}(f,h_{2\alpha})=\dfrac{\beta !}{\sqrt{(2\beta)!}}(f,h_{2\beta})\) for any \(\beta\in\mathbb N^d\) with \(| \alpha| =| \beta| \).
Here \(\mathfrak{V}f\) is the Bargmann transform. The element \(f\in\mathcal S^{'}_{1/2}(\mathbb R^d)\), where \(\mathcal S^{'}_{1/2}(\mathbb R^d)\) is the Gelfand-Shilov distribution space, is called symmetric, if the pullback \(U^{*}f\) is equal to \(f\), for every unitary transformation \(U\) on \(\mathbb R^d\).

MSC:

35Q40 PDEs in connection with quantum mechanics
35S05 Pseudodifferential operators as generalizations of partial differential operators
46F05 Topological linear spaces of test functions, distributions and ultradistributions
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
30Gxx Generalized function theory

References:

[1] Gelfand IM, Generalized functions, II–III (1968)
[2] DOI: 10.1007/978-3-642-96750-4 · doi:10.1007/978-3-642-96750-4
[3] DOI: 10.1137/0517037 · Zbl 0604.46042 · doi:10.1137/0517037
[4] DOI: 10.1090/S0002-9939-96-03291-1 · Zbl 0871.46018 · doi:10.1090/S0002-9939-96-03291-1
[5] DOI: 10.1007/978-3-7643-8512-5 · doi:10.1007/978-3-7643-8512-5
[6] Teofanov N, Oper. Theory Adv. Appl. 164 pp 173– (2006)
[7] DOI: 10.1155/2004/498627 · Zbl 1069.46021 · doi:10.1155/2004/498627
[8] DOI: 10.1007/s11868-011-0044-3 · Zbl 1257.42033 · doi:10.1007/s11868-011-0044-3
[9] DOI: 10.1007/978-1-4612-0003-1 · doi:10.1007/978-1-4612-0003-1
[10] DOI: 10.1002/cpa.3160140303 · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[11] DOI: 10.1002/cpa.3160200102 · Zbl 0149.09601 · doi:10.1002/cpa.3160200102
[12] Yakubovich S, Math Model Anal 11 (3) pp 331– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.