×

Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event. (English) Zbl 1322.62234

Summary: In biomedical studies where the event of interest is recurrent (e.g., hospitalization), it is often the case that the recurrent event sequence is subject to being stopped by a terminating event (e.g., death). In comparing treatment options, the marginal recurrent event mean is frequently of interest. One major complication in the recurrent/terminal event setting is that censoring times are not known for subjects observed to die, which renders standard risk set based methods of estimation inapplicable. We propose two semiparametric methods for estimating the difference or ratio of treatment-specific marginal mean numbers of events. The first method involves imputing unobserved censoring times, while the second methods uses inverse probability of censoring weighting. In each case, imbalances in the treatment-specific covariate distributions are adjusted out through inverse probability of treatment weighting. After the imputation and/or weighting, the treatment-specific means (then their difference or ratio) are estimated nonparametrically. Large-sample properties are derived for each of the proposed estimators, with finite sample properties assessed through simulation. The proposed methods are applied to kidney transplant data.

MSC:

62N01 Censored data models
62G20 Asymptotic properties of nonparametric inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
62P12 Applications of statistics to environmental and related topics

References:

[1] Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York · Zbl 0769.62061
[2] Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10: 1100–1120 · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[3] Anstrom KJ, Tsiatis AA (2001) Utilizing propensity scores to estimate causal treatment effects with censored time-lagged data. Biometrics 57: 1207–1218 · Zbl 1209.62217 · doi:10.1111/j.0006-341X.2001.01207.x
[4] Bilias Y, Gu M, Ying Z (1997) Towards a general asymptotic theory for the Cox model with staggered entry. Ann Stat 25: 662–682 · Zbl 0923.62085 · doi:10.1214/aos/1031833668
[5] Cook RJ, Lawless JF (1997) Marginal analysis of recurrent events and a terminating event. Stat Med 16: 911–924 · doi:10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
[6] Cook RJ, Lawless JF (2007) The analysis of recurrent event data. Springer, New York
[7] Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee K-A (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J Am Stat Assoc 104: 6075 · Zbl 1388.62281
[8] Cox DR (1972) Regression models and life-tables. J Roy Stat Soc B 34: 187–202 · Zbl 0243.62041
[9] Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York · Zbl 0727.62096
[10] Ghosh D, Lin DY (2000) Nonparametric analysis of recurrent events and death. Biometrics 56: 554–562 · Zbl 1060.62614 · doi:10.1111/j.0006-341X.2000.00554.x
[11] Ghosh D, Lin DY (2002) Marginal regression models for recurrent and terminal event. Stat Sinica 12: 663–688 · Zbl 1005.62084
[12] Hernan MA, Brumback B, Robins JM (2000) Marginal structural models to estimate the causal effect of Zidovudine on the survival of HIV-positive men. Epidemiology 11: 561–570 · doi:10.1097/00001648-200009000-00012
[13] Huang CY, Wang MC (2004) Joint modeling and estimation for recurrent event processes and failure time data. J Am Stat Assoc 99: 1153–1165 · Zbl 1055.62108 · doi:10.1198/016214504000001033
[14] Lawless JF, Nadeau C (1995) Some simple robust methods for the analysis of recurrent events. Technometrics 37: 158–168 · Zbl 0822.62085 · doi:10.1080/00401706.1995.10484300
[15] Li Q, Lagakos S (1997) Use of the Wei-Lin-Weissfeld method for the analysis of a recurring and a terminating event. Stat Med 16: 925–940 · doi:10.1002/(SICI)1097-0258(19970430)16:8<925::AID-SIM545>3.0.CO;2-2
[16] Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J Roy Stat Soc B 62: 711–730 · Zbl 1074.62510 · doi:10.1111/1467-9868.00259
[17] Little RJA, Rubin DB (2002) Statistical analysis with missing data. Wiley, New York
[18] Liu L, Wolfe RA, Huang X (2004) Shared frailty models for recurrent events and a terminal event. Biometrics 60: 747–756 · Zbl 1274.62827 · doi:10.1111/j.0006-341X.2004.00225.x
[19] Lu K, Tsiatis AA (2001) Multiple imputation methods for estimating regression coefficients in proportional hazards models with missing cause of failure. Biometrics 57: 1191–1197 · Zbl 1209.62223 · doi:10.1111/j.0006-341X.2001.01191.x
[20] Lunceford JK, Davidian M (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 23: 2937–2960 · doi:10.1002/sim.1903
[21] Pan Q, Schaubel DE (2009) Flexible estimation of differences in treatment-specific recurrent event means in the presence of a terminating event. Biometrics (in press) · Zbl 1172.62056
[22] Pepe M, Cai J (1993) Some graphical displays and marginal regression analysis for recurrent failure times and time dependent covariates. J Am Stat Assoc 88: 811–820 · Zbl 0794.62074 · doi:10.1080/01621459.1993.10476346
[23] Pollard D (1990) Empirical processes: theory and applications. Institute of Mathematical Statistics, Hayward · Zbl 0741.60001
[24] Port FK, Bragg-Gresham JL, Metzger RA, Dykstra DM, Gillespie BW, Young EW, Delmonico FL, Wynn JJ, Merion RM, Wolfe RA, Held PJ (2002) Donor characteristics associated with reduced graft survival: an approach to expanding the pool of donor kidneys. Transplantation 74: 1281–1286 · doi:10.1097/00007890-200211150-00014
[25] Prentice R L, Williams B, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68: 373–379 · Zbl 0465.62100 · doi:10.1093/biomet/68.2.373
[26] Robins JM (1993) Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers. In: Proceedings of the Biopharmaceutical Section, American Statistical Association, Alexandria, VA, pp 24–33
[27] Robins JM, Hernan MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11: 550–560 · doi:10.1097/00001648-200009000-00011
[28] Robins JM, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell N, Dietz K, Farewell V (eds) AIDS epidemiolgy-methodological issues, proceedings of the biopharmaceutical section, American Statistical Association, Alexandria, VA, pp 24–33
[29] Robins JM, Wang N (2000) Inference for imputation estimators. Biometrika 87: 113–124 · Zbl 0974.62016 · doi:10.1093/biomet/87.1.113
[30] Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70: 41–55 · Zbl 0522.62091 · doi:10.1093/biomet/70.1.41
[31] Rubin DB (1978) Bayesian inference for causal effects: the role of randomization. Ann Stat 6: 34–58 · Zbl 0383.62021 · doi:10.1214/aos/1176344064
[32] Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York
[33] Schaubel DE, Cai J (2006) Multiple imputation methods for recurrent event data with missing event category. Can J Stat 34: 677–692 · Zbl 1115.62116 · doi:10.1002/cjs.5550340408
[34] Schaubel DE, Zeng D, Cai J (2006) A semiparametric additive rates model for recurrent event data. Lifetime Data Anal 12: 389–406 · Zbl 1109.62110 · doi:10.1007/s10985-006-9017-x
[35] Taylor JMG, Marray S, Hsu C-H (2002) Survival estimation and testing via multiple imputation. Stat Probab Lett 3: 221–232 · Zbl 1045.62100 · doi:10.1016/S0167-7152(02)00030-5
[36] van der Vaart AW (2000) Asymptotic statistics. Cambridge, Melbourne
[37] van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York · Zbl 0862.60002
[38] Wang N, Robins JM (1998) Large-sample theory for parametric multiple imputation estimators. Biometrika 85: 935–948 · Zbl 1054.62524 · doi:10.1093/biomet/85.4.935
[39] Wei G (2008) Semiparametric methods for estimating cumulative treatment effects in the presence of non-proportional hazards and dependent censoring. Ph.D Dissertation, Department of Biostatistics, University of Michigan
[40] Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by modelling marginal distributions. J Am Stat Assoc 84: 1065–1073 · doi:10.1080/01621459.1989.10478873
[41] Ye Y, Kalbfleisch JD, Schaubel DE (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63: 78–87 · Zbl 1124.62083 · doi:10.1111/j.1541-0420.2006.00677.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.