×

Improving power posterior estimation of statistical evidence. (English) Zbl 1322.62098

Summary: The statistical evidence (or marginal likelihood) is a key quantity in Bayesian statistics, allowing one to assess the probability of the data given the model under investigation. This paper focuses on refining the power posterior approach to improve estimation of the evidence. The power posterior method involves transitioning from the prior to the posterior by powering the likelihood by an inverse temperature. In common with other tempering algorithms, the power posterior involves some degree of tuning. The main contributions of this article are twofold – we present a result from the numerical analysis literature which can reduce the bias in the estimate of the evidence by addressing the error arising from numerically integrating across the inverse temperatures. We also tackle the selection of the inverse temperature ladder, applying this approach additionally to the Stepping Stone sampler estimation of evidence. A key practical point is that both of these innovations incur virtually no extra cost.

MSC:

62F15 Bayesian inference

Software:

tsbridge

References:

[1] Atkinson, K., Han, W.: Elementary Numerical Analysis, 3rd edn. Wiley, New York (2004)
[2] Behrens, G., Friel, N., Hurn, M.: Tuning tempered transitions. Stat. Comput. 22(1), 65-78 (2012) · Zbl 1322.62008 · doi:10.1007/s11222-010-9206-z
[3] Calderhead, B., Girolami, M.: Estimating Bayes factors via thermodynamic integration and population MCMC. Comput. Stat. Data Anal. 53(12), 4028-4045 (2009) · Zbl 1453.62055 · doi:10.1016/j.csda.2009.07.025
[4] Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90(432), 1313-1321 (1995) · Zbl 0868.62027 · doi:10.1080/01621459.1995.10476635
[5] Friel, N., Pettitt, A.N.: Marginal likelihood estimation via power posteriors. J. R. Stat. Soc. B 70(3), 589-607 (2008) · Zbl 05563360 · doi:10.1111/j.1467-9868.2007.00650.x
[6] Friel, N., Wyse, J.: Estimating the evidence—a review. Stat. Neerl. 66(3), 288-308 (2012) · doi:10.1111/j.1467-9574.2011.00515.x
[7] Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711-732 (1995) · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[8] Lartillot, N., Philippe, H.: Computing Bayes factors using thermodynamic integration. Syst. Biol. 55(2), 195-207 (2006) · doi:10.1080/10635150500433722
[9] Lefebvre, G., Steele, R.J., Vandal, A.C.: A path sampling identity for computing the Kullback-Leibler and J-divergences. Comput. Stat. Data Anal. 54(7), 1719-1731 (2010) · Zbl 1284.62097 · doi:10.1016/j.csda.2010.01.018
[10] Meng, X.L., Wong, W.H.: Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Stat. Sin. 6(4), 831-860 (1996) · Zbl 0857.62017
[11] Neal, R.M.: Annealed importance sampling. Stat. Comput. 11(2), 125-139 (2001) · doi:10.1023/A:1008923215028
[12] Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. B 59(4), 731-792 (1997) · Zbl 0891.62020 · doi:10.1111/1467-9868.00095
[13] Skilling, J.: Nested sampling for general Bayesian computation. Bayesian Anal. 1(4), 833-860 (2006) · Zbl 1332.62374 · doi:10.1214/06-BA127
[14] Smith, J. W.; Everhart, J. E.; Dickson, W. C.; Knowler, W. C.; Johannes, R. S., Using the ADAP learning algorithm to forecast the onset of diabetes mellitus, 261 (1988), Indianapolis
[15] Tierney, L., Kadane, J.B.: Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81(393), 82-86 (1986) · Zbl 0587.62067 · doi:10.1080/01621459.1986.10478240
[16] Williams, E.: Regression Analysis. Wiley, Chichester (1959) · Zbl 0088.12701
[17] Xie, W., Lewis, P.O., Fan, Y., Kuo, L., Chen, M.H.: Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60(2), 150-160 (2011) · doi:10.1093/sysbio/syq085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.