×

Randomly trapped random walks on \(\mathbb{Z}^d\). (English) Zbl 1322.60051

Summary: We give a complete classification of scaling limits of randomly trapped random walks and associated clock processes on \(\mathbb{Z}^d\), \(d \geq 2\). Namely, under the hypothesis that the discrete skeleton of the randomly trapped random walk has a slowly varying return probability, we show that the scaling limit of its clock process is either deterministic linearly growing or a stable subordinator. In the case when the discrete skeleton is a simple random walk on \(\mathbb{Z}^d\), this implies that the scaling limit of the randomly trapped random walk is either a Brownian motion or the fractional kinetics process, as conjectured in [G. Ben Arous et al., Ann. Probab. 43, No. 5, 2405–2457 (2015; Zbl 1329.60354)].

MSC:

60G50 Sums of independent random variables; random walks
60F17 Functional limit theorems; invariance principles
60G22 Fractional processes, including fractional Brownian motion
60J65 Brownian motion

Citations:

Zbl 1329.60354

References:

[1] Barlow, M. T.; Černý, J., Convergence to fractional kinetics for random walks associated with unbounded conductances, Probab. Theory Related Fields, 149, 3-4, 639-673 (2011), MR 2776627 · Zbl 1227.60112
[2] Ben Arous, G.; Cabezas, M.; Černý, J.; Royfman, R., Randomly trapped random walks, Ann. Probab. (2014), in press · Zbl 1329.60354
[3] Ben Arous, G.; Černý, J., Scaling limit for trap models on \(Z^d\), Ann. Probab., 35, 6, 2356-2384 (2007), MR 2353391 · Zbl 1134.60064
[4] Ben Arous, G.; Černý, J.; Mountford, T., Aging in two-dimensional Bouchaud’s model, Probab. Theory Related Fields, 134, 1, 1-43 (2006), MR 2221784 · Zbl 1089.82017
[5] Bolthausen, E.; Sznitman, A.-S., On the static and dynamic points of view for certain random walks in random environment, Methods Appl. Anal., 9, 3, 345-375 (2002), Special issue dedicated to Daniel W. Stroock and Srinivasa S.R. Varadhan on the occasion of their 60th birthday. MR 2023130 · Zbl 1079.60079
[6] Černý, J., Moments and distribution of the local time of a two-dimensional random walk, Stoch. Process. Appl., 117, 2, 262-270 (2007), MR 2290196 · Zbl 1107.60043
[7] Darling, D. A., The influence of the maximum term in the addition of independent random variables, Trans. Amer. Math. Soc., 73, 95-107 (1952), MR 0048726 · Zbl 0047.37502
[8] Dvoretzky, A.; Erdős, P., Some problems on random walk in space, (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 (1951), University of California Press: University of California Press Berkeley, Los Angeles), 353-367, MR 0047272 · Zbl 0044.14001
[9] Erdős, P.; Taylor, S. J., Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hungar., 11, 137-162 (1960), (unbound insert). MR 0121870 · Zbl 0091.13303
[10] Fontes, L. R.G.; Mathieu, P., On the dynamics of trap models in \(Z^d\), Proc. Lond. Math. Soc. (2013) · Zbl 1307.60141
[12] Jacod, J.; Shiryaev, A. N., (Limit Theorems for Stochastic Processes. Limit Theorems for Stochastic Processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288 (2003), Springer-Verlag: Springer-Verlag Berlin), MR 1943877 · Zbl 1018.60002
[13] Kallenberg, O., (Foundations of Modern Probability. Foundations of Modern Probability, Probability and its Applications (New York) (2002), Springer-Verlag: Springer-Verlag New York), MR 1876169 · Zbl 0996.60001
[14] Kesten, H.; Spitzer, F., Ratio theorems for random walks. I, J. Anal. Math., 11, 285-322 (1963), MR 0162279 · Zbl 0121.35201
[15] Meerschaert, M. M.; Scheffler, H.-P., Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41, 3, 623-638 (2004), MR 2074812 · Zbl 1065.60042
[16] Montroll, E. W.; Weiss, G. H., Random walks on lattices. II, J. Math. Phys., 6, 167-181 (1965), MR 0172344 · Zbl 1342.60067
[17] Mourrat, J.-C., Scaling limit of the random walk among random traps on \(Z^d\), Ann. Inst. H. Poincaré Probab. Statist., 47, 3, 813-849 (2011), MR 2841076 · Zbl 1262.60098
[18] Petersen, K., (Ergodic Theory. Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2 (1983), Cambridge University Press: Cambridge University Press Cambridge), MR 833286 · Zbl 0507.28010
[19] Pitt, J. H., Multiple points of transient random walks, Proc. Amer. Math. Soc., 43, 195-199 (1974), MR 0386021 · Zbl 0292.60107
[20] Révész, P., Random Walk in Random and Non-Random Environments (2013), World Scientific Publishing Co. Pvt. Ltd.: World Scientific Publishing Co. Pvt. Ltd. Hackensack, NJ, MR 3060348 · Zbl 1283.60007
[21] Seneta, E., (Regularly Varying Functions. Regularly Varying Functions, Lecture Notes in Mathematics, vol. 508 (1976), Springer-Verlag) · Zbl 0324.26002
[22] Spitzer, F., (Principles of Random Walk. Principles of Random Walk, Graduate Texts in Mathematics, vol. 34 (1976), Springer-Verlag: Springer-Verlag New York, Heidelberg), MR 0388547 · Zbl 0119.34304
[23] Whitt, W., (Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Application to Queues. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Application to Queues, Springer Series in Operations Research (2002), Springer-Verlag: Springer-Verlag New York), MR 1876437 · Zbl 0993.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.