×

Ideals of operators on \(C^\ast\)-algebras and their preduals. (English) Zbl 1322.46035

The authors continue their study of certain classical ideals in [Integral Equations Oper. Theory 79, No. 4, 507–532 (2014; Zbl 1322.46040)]. Therefore, to start with, we resume some definitions of the latter: Given two Banach spaces \(X\) and \(Y\), \(B(X,Y)\) (respectively, \(\mathcal{K}(X,Y)\), \(\mathcal{WK}(X,Y)\)) denotes the set of bounded (respectively, compact, weakly compact) linear operators from \(X\) to \(Y\). We say that \(T\in B(X,Y)\) fixes a copy of a subspace \(Z\subset X\) if \(Z\) is isomorphic to \(T(Z)\). \(T\) is called strictly singular (respectively, finitely strictly singular) if it does not fix any infinite-dimensional subspace (respectively, if given \(\varepsilon>0\) there is a natural number \(N\) such that each subspace of dimension at least \(N\) contains an element \(x\) with \(\|Tx\|<\varepsilon\|x\|\)). The strictly singular operators form a closed ideal \(\mathcal{SS}(X,Y)\subset B(X,Y)\) (in the “usual” sense: \(\mathcal{SS}(X,Y)\) contains the finite rank operators and if \(U\in B(X_0,X)\), \(V\in B(Y,Y_0)\), then \(VTU\in\mathcal{SS}(X_0,Y_0)\)), likewise for the finitely strictly singular operators \(\mathcal{FSS}(X,Y)\subset B(X,Y)\). The following inclusions hold and are in general strict: \[ \mathcal{K}(X,Y)\subset\mathcal{FSS}(X,Y)\subset\mathcal{SS}(X,Y)\subset\mathcal{IN}(X,Y), \]
\[ \mathcal{K}(X,Y)\subset\mathcal{SCS}(X,Y)\subset\mathcal{IN}(X,Y), \] where \(\mathcal{IN}\) denotes the closed ideal of inessential or Fredholm perturbation operators \(T\) defined by the fact that \(I+WT\) is Fredholm for every \(W\in B(Y,X)\) and where \(\mathcal{SCS}\) denotes the closed ideal of strictly cosingular operators \(T\) defined by the fact that \(Q_ZT\) is not surjective with \(Q_Z\) the quotient map \(Y\to Y/Z\). Also, the closed ideal \(\mathcal{DP}\) of Dunford-Pettis operators is considered: \(T\in B(X,Y)\) is called Dunford-Pettis if it takes weakly null sequences to norm null ones; a Banach space \(X\) is said to have the DPP (i.e., the Dunford-Pettis property) if \(\mathcal{WK}(X,Y)\subset\mathcal{DP}(X,Y)\) for any Banach space \(Y\).
The authors study the ideals above when \(X\) and/or \(Y\) are \(C^*\)-algebras, von Neumann algebras or their (pre)duals. The main topic is to find conditions (which often are necessary and sufficient) for inclusions or equivalences of the above ideals in terms of properties of the \(C^*\)-algebra.
For example, it is shown that if \(\mathcal{A}\) is a \(C^*\)-algebra and \(Y\) a Banach space, then \(T\in B(\mathcal{A},Y)\) is not strictly singular (if and) only if it fixes a copy of \(c_0\) or of \(\ell_2\); a natural improvement in case \(\mathcal{A}\) is a von Neumann algebra, is given, too. (The companion result in the authors’ above mentioned paper describes non strictly singular operators acting on certain non-commutative \(L_p\), \(1<p<\infty\), as those which fix \(\ell_p\) or \(\ell_2\).)
As ingredients for the proofs, the authors use, among others, the following known facts: If an operator \(T\in B(\mathcal{A},Y)\) (\(\mathcal{A}\) a \(C^*\)-algebra) is weakly compact, then it can be approximated by operators factoring through a Hilbert space, while if \(T\) is not weakly compact, then it fixes \(c_0\); a von Neumann algebra \(\mathcal{A}\) has the DPP iff it is of finite type I (which means that it can be written \(\mathcal{A}=(\sum N_k)_{\infty}\), where the \(N_k\) are von Neumann algebras of type I\(_{n_k}\) with \(\sup n_k<\infty\)). That the DPP enters the subject in a natural way comes from the observation that a weakly compact operator defined on a Banach space with the DPP is strictly singular.
In the following, we list some more results.
(1)
A von Neumann algebra \(\mathcal{A}\) is of finite type I iff \(\mathcal{FSS}(\mathcal{A})=\mathcal{SS}(\mathcal{A})=\mathcal{IN}(\mathcal{A})=\mathcal{WK}(\mathcal{A})\), while all these ideals are different if \(\mathcal{A}\) is not of finite type I.
(2)
For a \(C^*\)-algebra algebra \(\mathcal{A}\), the following are equivalent: (i) \(\mathcal{A}\) has the DPP, (ii) \(\mathcal{A}\) does not contain complemented copies of \(\ell_2\), (iii) \(\mathcal{WK}(\mathcal{A},Y)=\mathcal{SS}(\mathcal{A},Y)\) for any Banach space \(Y\), (iv) \(\mathcal{SS}(\mathcal{A},Y)=\mathcal{D}P(\mathcal{A},Y)\) for any Banach space \(Y\), (v) \(B(\mathcal{A},H)=\mathcal{SS}(\mathcal{A},H)\) for any Hilbert space \(H\).
(3)
The predual of a von Neumann algebra has the DPP iff it does not contain complemented copies of \(\ell_2\).
(4)
Let \(\mathcal{A}\) be a compact \(C^*\)-algebra (meaning that, for each \(a\in\mathcal{A}\), the operator \(\mathcal{A}\ni b\mapsto aba\in\mathcal{A}\) is compact). Then \(\mathcal{SS}(\mathcal{A})=\mathcal{SCS}(\mathcal{A})=\mathcal{IN}(\mathcal{A})\) and \(\mathcal{SS}(\mathcal{A})=\mathcal{SS}^*(\mathcal{A})\), where the adjoint ideal \(\mathcal{SS}^*(\mathcal{A})\) is defined by \(\{T\in B(\mathcal{A}): T^*\in\mathcal{SS}(\mathcal{A}^*)\}\). Furthermore (with “\(+\)” having the obvious meaning), \[ \mathcal{IN}(\mathcal{A})_+=\mathcal{SS}(\mathcal{A})_+=\mathcal{SCS}(\mathcal{A})_+=\mathcal{WK}(\mathcal{A})_+= \mathcal{K}(\mathcal{A})_+\tag{1} \] while there are non-compact \(\mathcal{A}\) for which (1) does not hold.
(5)
A von Neumann algebra is atomic (i.e., each nonzero projection majorizes a nonzero minimal projection) iff (1) holds with \(\mathcal{A}_*\) instead of \(\mathcal{A}\).
(6)
A von Neumann algebra \(\mathcal{A}\) is of finite type I iff the product of any two strictly singular operators on \(\mathcal{A}\) is compact.

MSC:

46L05 General theory of \(C^*\)-algebras
47L20 Operator ideals
47B07 Linear operators defined by compactness properties
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47B49 Transformers, preservers (linear operators on spaces of linear operators)
47B65 Positive linear operators and order-bounded operators

Citations:

Zbl 1322.46040

References:

[1] P.Aiena, Fredholm and local spectral theory, with applications to multipliers (Kluwer Academic Publishers, Dordrecht, 2004). · Zbl 1077.47001
[2] F.Albiac, N.Kalton, Topics in Banach space theory (Springer, New York, 2006). · Zbl 1094.46002
[3] J.Alexander, ‘Compact Banach algebras’, Proc. London Math. Soc., 18 (1968) 1-18. · Zbl 0184.16502
[4] J.Arazy, J.Lindenstrauss, ‘Some linear topological properties of the spaces \(\mathfrak{C}_p\) of operators on Hilbert space’, Compos. Math., 30 (1975) 81-111. · Zbl 0302.47034
[5] F.Bombal, ‘On \(( V )\) sets and Pelczynski’s property \(( V )\)’, Glasg. Math. J., 32 (1990) 109-120. · Zbl 0693.46013
[6] L.Bunce, ‘The Dunford-Pettis property in the predual of a von Neumann algebra’, Proc. Amer. Math. Soc., 116 (1992) 99-100. · Zbl 0810.46060
[7] J.Calkin, ‘Two‐sided ideals and congruences in the ring of bounded operators in Hilbert space’, Ann. of Math., (2)42 (1941) 839-873. · Zbl 0063.00692
[8] C.‐H.Chu, ‘A note on scattered \(C^*\)‐algebras and the Radon-Nikodym property’, J. London Math. Soc., (2)24 (1981) 533-536. · Zbl 0438.46041
[9] C.‐H.Chu, B.Iochum, ‘The Dunford-Pettis property in \(C^*\)‐algebras’, Studia Math., 97 (1990) 59-64. · Zbl 0734.46034
[10] C.‐H.Chu, B.Iochum, S.Watanabe, ‘\(C\)‐algebras with the Dunford-Pettis property’, Function spaces \((\) Edwardsville IL \(, 1990 )\), Lecture Notes in Pure and Applied Mathematics 136 (Dekker, New York, 1992) 67-70. · Zbl 0817.46054
[11] J.Diestel, H.Jarchow, A.Pietsch, ‘Operator ideals’, Handbook of the geometry of Banach spaces I (North‐Holland, Amsterdam, 2001) 437-496. · Zbl 1012.47001
[12] J.Diestel, H.Jarchow, A.Tonge, Absolutely summing operators (Cambridge University Press, Cambridge, 1995). · Zbl 0855.47016
[13] M.Fabian, P.Habala, P.Hajek, V.Montesinos Santalucia, J.Pelant, V.Zizler, Functional analysis and infinite‐dimensional geometry (Springer, New York, 2001). · Zbl 0981.46001
[14] Y.Friedman, ‘Subspaces of \(L C ( H )\) and \(\mathfrak{C}_p\)’, Proc. Amer. Math. Soc., 53 (1975) 117-122. · Zbl 0327.47008
[15] I. C.Gohberg, I. A.Feldman, A. S.Markus, ‘Normally solvable operators and ideals associated with them’, Amer. Math. Soc. Transl., 61 (1967) 63-84. · Zbl 0181.40601
[16] M.Gonzalez, ‘On essentially incomparable Banach spaces’, Math. Z., 215 (1994) 621-629. · Zbl 0791.46011
[17] P.Harmand, D.Werner, W.Werner, \(M\)‐ideals in Banach spaces and Banach algebras (Springer, Berlin, 1993). · Zbl 0789.46011
[18] T.Huruya, ‘A spectral characterization of a class of \(C^*\)‐algebras’, Sci. Rep. Niigata Univ. Ser. A, 15 (1978) 21-24. · Zbl 0375.46051
[19] H.Jarchow, ‘On weakly compact operators on C-algebras’, Math. Ann., 273 (1986) 341-343. · Zbl 0593.47016
[20] H.Jensen, ‘Scattered \(C^*\)‐algebras’, Math. Scand., 41 (1977) 308-314. · Zbl 0372.46059
[21] R.Kadison, J.Ringrose, Fundamentals of the theory of operator algebras II (American Mathematical Society, Providence, RI, 1997). · Zbl 0991.46031
[22] M.Kusuda, ‘A characterization of scattered \(C^*\)‐algebras and its application to \(C^*\)‐crossed products’, J. Operator Theory, 63 (2010) 417-424. · Zbl 1224.46116
[23] P.Lefevre, ‘When strict singularity of operators coincides with weak compactness’, J. Operator Theory, 67 (2012) 369-378. · Zbl 1261.47028
[24] C.Le Merdy, J.Roydor, E.Ricard, ‘Completely \(1\)‐complemented subspaces of Schatten spaces’, Trans. Amer. Math. Soc., 361 (2009) 849-887. · Zbl 1190.46043
[25] J.Marcolino Nhany, ‘La stabilité des espaces \(L_p\) non‐commutatifs’, Math. Scand., 81 (1997) 212-218. · Zbl 0914.46050
[26] V.Milman, ‘Operators of class \(C_0\) and \(C_0^\ast \) (Russian)’, Teor. Funkcii Funkcional. Anal. i Prilozen., 10 (1970) 15-26. · Zbl 0217.17201
[27] T.Oikhberg, E.Spinu, ‘Domination of operators in the non‐commutative setting’, Studia Math., 219 (2013) 35-67. · Zbl 1296.47033
[28] T.Oikhberg, E.Spinu, ‘Ideals of operators on non‐commutative spaces’, Integral Equations Operator Theory, 79 (2014) 507-532. · Zbl 1322.46040
[29] A.Pelczynski, ‘On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in \(C ( S )\)‐spaces’, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys., 13 (1965) 31-36. · Zbl 0138.38604
[30] A.Pelczynski, ‘On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in \(L ( \nu )\)‐spaces’, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys., 13 (1965) 37-41. · Zbl 0138.38604
[31] H.Pfitzner, ‘\(L\)‐summands in their biduals have Pelczyski’s property \(( V )\)’, Studia Math., 104 (1993) 91-98. · Zbl 0815.46020
[32] H.Pfitzner, ‘Weak compactness in the dual of a \(C^\ast \)‐algebra is determined commutatively’, Math. Ann., 298 (1994) 349-371. · Zbl 0791.46035
[33] A.Pietsch, Operator ideals (North‐Holland Publishing Co., Amsterdam, 1980). · Zbl 0399.47039
[34] G.Pisier, Factorization of linear operators and geometry of Banach spaces (American Mathematical Society, Providence, RI, 1986). · Zbl 0588.46010
[35] F.Pop, ‘On weakly injective von Neumann algebras’, Arch. Math. (Basel), 97 (2011) 151-156. · Zbl 1230.46051
[36] G.Robertson, ‘Injective matricial Hilbert spaces’, Math. Proc. Cambridge Philos. Soc., 110 (1991) 183-190. · Zbl 0834.46044
[37] G.Russu, ‘Coincidence of ideals of strictly singular operators and \(\phi \)‐admissible perturbations in Lorentz spaces’, Amer. Math. Soc. Trans., 142 (1989) 73-82. · Zbl 0671.47017
[38] M.Takesaki, Theory of operator algebras 1 (Springer, New York, 2003). · Zbl 0990.46034
[39] P.Tradacete, ‘Subspace structure of Lorentz \(L_{p , q}\) spaces and strictly singular operators’, J. Math. Anal. Appl., 367 (2010) 98-107. · Zbl 1207.46028
[40] L.Weis, ‘On perturbations of Fredholm operators in \(L_p ( \mu )\)‐spaces’, Proc. Amer. Math. Soc., 67 (1977) 287-292. · Zbl 0377.46016
[41] R. J.Whitley, ‘Strictly singular operators and their conjugates’, Trans. Amer. Math. Soc., 113 (1964) 252-261. · Zbl 0124.06603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.