×

A remark on two generalized Orlicz-Morrey spaces. (English) Zbl 1322.42027

Let \(\mathcal{Y}\) be the set of all Young functions \(\Phi\) such that, for any \(t\in(0,\infty)\), \(\Phi(t)\in(0,\infty)\). Assume that \(\mathcal{G}_1\) is the set of all functions \(\phi:\;[0,\infty)\to[0,\infty)\) such that \(\phi(t)\) is nondecreasing but \(\phi(t)/t\) is nonincreasing. Moreover, for any \(\Phi\in\mathcal{Y}\), let \(\mathcal{G}_2\) be the set of all functions \(\phi:\;[0,\infty)\to[0,\infty)\) such that \(\phi(t)\) is nondecreasing, but for any \(s\in(0,\infty)\), \(\phi((s+t)^n)/\Phi^{-1}(((s+t)/s)^n)\) is nonincreasing, where \(\Phi^{-1}\) denotes the inverse of \(\Phi\).
Let \(\Phi\in\mathcal{Y}\), \(\varphi\in\mathcal{G}_1\) and \(\phi\in\mathcal{G}_2\). Denote by \(\mathcal{Q}\) the family of all cubes in \(\mathbb{R}^n\) with sides parallel to the coordinate axes. For the cube \(Q\in\mathcal{Q}\) and the measurable function \(f\) on \(\mathbb{R}^n\), let \[ \|f\|_{(\varphi,\Phi);Q}:=\inf\left\{\lambda\in(0,\infty): \frac{\varphi(|Q|)}{|Q|}\int_Q \Phi\left(\frac{|f(x)|}{\lambda}\right)\,dx\leq1\right\}. \] Then the generalized Orlicz-Morrey space \(\mathcal{L}^{\varphi,\Phi}(\mathbb{R}^n)\) is defined to be the Banach space with the norm \[ \|f\|_{\mathcal{L}^{\varphi,\Phi}(\mathbb{R}^n)}:=\sup_{Q\in\mathcal{Q}}\|f\|_{(\varphi,\Phi);Q}. \] Furthermore, for \(Q\in\mathcal{Q}\) and the measurable function \(f\) on \(\mathbb{R}^n\), let \[ \|f\|_{\Phi;Q}:=\inf\left\{\lambda\in(0,\infty): \frac{1}{|Q|}\int_Q \Phi\left(\frac{|f(x)|}{\lambda}\right)\,dx\leq1\right\}. \] Then the generalized Orlicz-Morrey space \(\mathcal{M}_{\phi,\Phi}(\mathbb{R}^n)\) is defined to be the Banach space with the norm \[ \|f\|_{\mathcal{M}_{\phi,\Phi}(\mathbb{R}^n)}:=\sup_{Q\in\mathcal{Q}}\phi(|Q|)\|f\|_{\Phi;Q}. \]
In this article, the authors investigate the differences between the Orlicz-Morrey spaces \(\mathcal{L}^{\varphi,\Phi}(\mathbb{R}^n)\) and \(\mathcal{M}_{\phi,\Phi}(\mathbb{R}^n)\) in some typical cases.

MSC:

42B35 Function spaces arising in harmonic analysis
42B25 Maximal functions, Littlewood-Paley theory
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Gala, S.; Sawano, Y.; Tanaka, H., A new Beale-Kato-Majda criteria for the 3D magneto-micropolar fluid equations in the Orlicz-Morrey space, Math. Methods Appl. Sci., 35, 11, 1321-1334 (2012) · Zbl 1256.35079
[2] Gala, S.; Sawano, Y.; Tanaka, H., On the uniqueness of weak solutions of the 3D MHD equations in the Orlicz-Morrey space, Appl. Anal., 92, 4, 776-783 (2013) · Zbl 1277.35292
[3] Iida, T.; Sato, E.; Sawano, Y.; Tanaka, H., Multilinear fractional integrals on Morrey spaces, Acta Math. Sin. (Engl. Ser.), 28, 7, 1375-1384 (2012) · Zbl 1254.26012
[4] Liang, Y.; Nakai, E.; Yang, D.; Zhang, J., Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces, Banach J. Math. Anal., 8, 1, 221-268 (2014) · Zbl 1280.42016
[5] Liang, Y.; Yang, D., Musielak-Orlicz Campanato spaces and applications, J. Math. Anal. Appl., 406, 1, 307-322 (2013) · Zbl 1315.46030
[6] Lu, Q.; Tao, X., Characterization of maximal operators in Orlicz-Morrey spaces of homogeneous type, Appl. Math. J. Chinese Univ. Ser. B, 21, 1, 52-58 (2006) · Zbl 1099.42022
[7] Maeda, F. Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137, 1, 76-96 (2013) · Zbl 1267.46045
[8] Maeda, F. Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Trudinger’s inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces, Potential Anal., 38, 2, 515-535 (2013) · Zbl 1268.46024
[9] Mizuta, Y.; Nakai, E.; Ohno, T.; Shimomura, T., Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan, 62, 3, 707-744 (2010) · Zbl 1200.26007
[10] Mizuta, Y.; Nakai, E.; Ohno, T.; Shimomura, T., Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in \(R^n\), Rev. Mat. Complut., 25, 2, 413-434 (2012) · Zbl 1273.31005
[11] Nakai, E., Generalized fractional integrals on Orlicz-Morrey spaces, (Banach and Function Spaces (2004), Yokohama Publ.: Yokohama Publ. Yokohama), 323-333 · Zbl 1118.42005
[12] Nakai, E., Calderón-Zygmund operators on Orlicz-Morrey spaces and modular inequalities, (Banach and Function Spaces II (2008), Yokohama Publ.: Yokohama Publ. Yokohama), 393-410 · Zbl 1163.46021
[13] Nakai, E., Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math., 188, 3, 193-221 (2008) · Zbl 1163.46020
[14] Nakai, E., Orlicz-Morrey spaces and their preduals, (Banach and Function Spaces III. Banach and Function Spaces III, ISBFS 2009 (2011), Yokohama Publ.: Yokohama Publ. Yokohama), 187-205 · Zbl 1294.46028
[15] Sawano, Y.; Sobukawa, T.; Tanaka, H., Limiting case of the boundedness of fractional integral operators on nonhomogeneous space, J. Inequal. Appl., 16 (2006), Art. ID 92470 · Zbl 1193.42087
[16] Sawano, Y.; Sugano, S.; Tanaka, H., Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc., 363, 12, 6481-6503 (2011) · Zbl 1229.42024
[17] Sawano, Y.; Sugano, S.; Tanaka, H., Orlicz-Morrey spaces and fractional operators, Potential Anal., 36, 4, 517-556 (2012) · Zbl 1242.42017
[18] Stein, E. M., Note on the class L \(\log\) L, Studia Math., 32, 305-310 (1969) · Zbl 0182.47803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.