×

Green functions, Segre numbers, and King’s formula. (Fonctions de Green, nombres de Segre, et formule de King.) (English. French summary) Zbl 1322.32026

Authors’ abstract: Let \(\mathcal{J}\) be a coherent ideal sheaf on a complex manifold \(X\) with zero set \(Z\), and let \(G\) be a plurisubharmonic function such that \(G = \log | f | + \mathcal{O}(1)\) locally at \(Z\), where \(f\) is a tuple of holomorphic functions that defines \(\mathcal{J}\). We give a meaning to the Monge-Ampère products \((d d^c G)^k\) for \(k = 0, 1, 2, \dots\), and prove that the Lelong numbers of the currents \(M_k^{\mathcal{J}} : = 1_Z(d d^c G)^k\) at \(x\) coincide with the so-called Segre numbers of \(\mathcal J\) at \(x\), introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that \(M_k^{\mathcal{J}}\) satisfy a certain generalization of the classical King formula.

MSC:

32U35 Plurisubharmonic extremal functions, pluricomplex Green functions
32U25 Lelong numbers
32U40 Currents
32B15 Analytic subsets of affine space
14B05 Singularities in algebraic geometry

References:

[1] Achilles, R.; Manaresi, M., Multiplicities of bigraded And Intersection theory, Math. Ann., 309, 573-591 (1997) · Zbl 0894.14005 · doi:10.1007/s002080050128
[2] Achilles, R.; Rams, S., Intersection numbers, Segre numbers and generalized Samuel multiplicities, Arch. Math. (Basel), 77, 391-398 (2001) · Zbl 1032.13012 · doi:10.1007/PL00000509
[3] Andersson, M., Residue currents of holomorphic sections and Lelong currents, Arkiv för matematik, 43, 201-219 (2005) · Zbl 1103.32020 · doi:10.1007/BF02384777
[4] Andersson, M.; Samuelsson Kalm, H.; Wulcan, E.; Yger, A., Segre numbers, a generalized King formula, and local intersections · Zbl 1375.32020
[5] Bedford, E.; Taylor, A., A new capacity for plurisubharmonic functions, Acta Math., 149, 1-2, 1-40 (1982) · Zbl 0547.32012 · doi:10.1007/BF02392348
[6] Bedford, E.; Taylor, A., Fine topology, Šilov boundary, and \((dd^c)^n\), J. Funct. Anal., 72, 2, 225-251 (1987) · Zbl 0677.31005 · doi:10.1016/0022-1236(87)90087-5
[7] Błocki, Z. (2012)
[8] Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 199-262 (2010) · Zbl 1213.32025 · doi:10.1007/s11511-010-0054-7
[9] Demailly, J.-P., Complex and Differential geometry · Zbl 0602.31006
[10] Demailly, J.-P., Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., 194, 4, 519-564 (1987) · Zbl 0595.32006 · doi:10.1007/BF01161920
[11] Demailly, J.-P., Complex analysis and geometry, 115-193 (1993) · Zbl 0792.32006
[12] Demailly, J.-P.; Pham, H. H., A sharp lower bound for the log canonical threshold, Acta Math., 212, 1-9 (2014) · Zbl 1298.14006 · doi:10.1007/s11511-014-0107-4
[13] Fulton, W., Intersection theory (1998) · Zbl 0541.14005
[14] Gaffney, T.; Gassler, R., Segre numbers and hypersurface singularities, J. Algebraic Geom., 8, 695-736 (1999) · Zbl 0971.13021
[15] King, J. R., Proc. Carolina conf. on holomoprhic mappings and minimal surfaces, 43-56 (1970) · Zbl 0224.32009
[16] Lazarsfeld, R., Positivity in Algebraic Geometry II. Positivity for vector bundles, and multiplier ideals, 49 (2004) · Zbl 1093.14500
[17] Massey, D., Lê cycles and hypersurface singularities, 1615 (1995) · Zbl 0835.32002
[18] Massey, David B., Numerical control over complex analytic singularities, Mem. Amer. Math. Soc., 163, 778 (2003) · Zbl 1025.32010 · doi:10.1090/memo/0778
[19] Rashkovskii, A., Multi-circled Singularities, Lelong Numbers, and Integrability Index, J. Geom. Anal., 23, 1976-1992 (2013) · Zbl 1282.32013 · doi:10.1007/s12220-012-9314-4
[20] Rashkovskii, A.; Sigurdsson, R., Green functions with singularities along complex spaces, Internat. J. Math., 16, 333-355 (2005) · Zbl 1085.32018 · doi:10.1142/S0129167X05002904
[21] Siu, Y. T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27, 53-156 (1974) · Zbl 0289.32003 · doi:10.1007/BF01389965
[22] Skoda, H., Sous-ensembles analytiques d’ordre fini ou infini dans \(\mathbb{C}^n\), Bull. Soc. Math. France, 100, 353-408 (1972) · Zbl 0246.32009
[23] Stückrad, J.; Vogel, W., An algebraic approach to the intersection theory, Queen’s Papers in Pure and Appl. Math., 61, 1-32 (1982) · Zbl 0599.14003
[24] Tworzewski, P., Intersection theory in complex analytic geometry, Ann. Polon. Math., 62, 177-191 (1995) · Zbl 0911.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.