×

A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube. (English) Zbl 1322.06012

A sequence \(\langle x_n\rangle_n\) in a complete Boolean algebra can be defined to converge to an element \(x\) in various ways. A very natural way is to define \(\lim x_n=x\) to mean that \(x\) is equal to both \(\limsup x_n\) and \(\liminf x_n\), this is called algebraic convergence. The authors observe that in case the algebra is a power set, \(\mathcal P(X)\), a sequence converges algebraically iff the sequence of characteristic functions converges in the Cantor cube \(2^X\). This leads them to consider convergence in the Aleksandrov cube, which is \(2^X\) with the product topology derived from the topology on \(\{0,1\}\), where \(\{0\}\) is the only non-trivial open set. This may be formulated solely in terms of Boolean algebras as: the sequence \(\langle x_n\rangle_n\) converges to \(x\) iff \(x\geq\limsup x_n\) (thus, limits are no longer unique).
A sequential convergence determines a topology: a set is closed if all limits of all sequences in the set belong to the set, and if convergence in the topology coincides with the given convergence, the latter is said to be topological. The main result of the paper states that the Aleksandrov-like convergence is topological iff the Boolean algebra adds no new reals; the same is true for Cantor-like convergence, [see M. S. Kurilić and A. Pavlović, Ann. Pure Appl. Logic 148, No. 1-3, 49-62 (2007; Zbl 1132.06008)]. One can enrich a convergence structure by stipulating that a sequence converges to a point iff every subsequence has a further subsequence that converges to the point in the original sense; if the new structure is topological then the original one is said to be weakly topological. The authors show that collapsing \(\omega_2\) to \(\omega\) with finite conditions may or may not be weakly topological.
Reviewer: K. P. Hart (Delft)

MSC:

06E10 Chain conditions, complete algebras
03E17 Cardinal characteristics of the continuum
03E40 Other aspects of forcing and Boolean-valued models
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54D55 Sequential spaces

Citations:

Zbl 1132.06008

References:

[1] B. Balcar, W. Główczyński, T. Jech: The sequential topology on complete Boolean algebras. Fundam. Math. 155 (1998), 59–78. · Zbl 0910.28004
[2] B. Balcar, T. Jech, T. Pazák: Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann. Bull. Lond. Math. Soc. 37 (2005), 885–898. · Zbl 1101.28003 · doi:10.1112/S0024609305004807
[3] B. Balcar, T. Jech: Weak distributivity, a problem of von Neumann and the mystery of measurability. Bull. Symb. Log. 12 (2006), 241–266. · Zbl 1120.03028 · doi:10.2178/bsl/1146620061
[4] B. Balcar, J. Pelant, P. Simon: The space of ultrafilters on N covered by nowhere dense sets. Fundam. Math. 110 (1980), 11–24. · Zbl 0568.54004
[5] R. Engelking: General Topology. Translated from the Polish. Sigma Series in Pure Mathematics 6, Heldermann, Berlin, 1989. · Zbl 0684.54001
[6] I. Farah: Examples of -exhaustive pathological submeasures. Fundam. Math. 181 (2004), 257–272. · Zbl 1069.28002 · doi:10.4064/fm181-3-4
[7] T. Jech: Set Theory. Perspectives in Mathematical Logic, Springer, Berlin, 1997. · Zbl 0882.03045
[8] K. Kunen: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics 102, North-Holland, Amsterdam, 1980. · Zbl 0443.03021
[9] M. S. Kurilić, A. Pavlović: A posteriori convergence in complete Boolean algebras with the sequential topology. Ann. Pure Appl. Logic 148 (2007), 49–62. · Zbl 1132.06008 · doi:10.1016/j.apal.2007.05.002
[10] M. S. Kurilić, A. Pavlović: Some forcing related convergence structures on complete Boolean algebras. Novi Sad J. Math. 40 (2010), 77–94. · Zbl 1265.54131
[11] M. S. Kurilić, A. Pavlović: The convergence of the sequences coding the ground model reals. Publ. Math. Debrecen 82 (2013), 277–292. · Zbl 1299.54015 · doi:10.5486/PMD.2013.5199
[12] M. S. Kurilić, S. Todorčević: Property (h) and cellularity of complete Boolean algebras. Arch. Math. Logic 48 (2009), 705–718. · Zbl 1201.03044 · doi:10.1007/s00153-009-0144-4
[13] D. Maharam: An algebraic characterization of measure algebras. Ann. Math. (2) 48 (1947), 154–167. · Zbl 0029.20401 · doi:10.2307/1969222
[14] R. D. Mauldin (ed.): The Scottish Book. Mathematics from the Scottish Café. Birkhäuser, Boston, 1981. · Zbl 0485.01013
[15] M. Talagrand: Maharam’s problem. C. R., Math., Acad. Sci. Paris 342 (2006), 501–503. · Zbl 1099.28004 · doi:10.1016/j.crma.2006.01.026
[16] M. Talagrand: Maharam’s problem. Ann. Math. (2) 168 (2008), 981–1009. · Zbl 1185.28002 · doi:10.4007/annals.2008.168.981
[17] S. Todorcevic: A problem of von Neumann and Maharam about algebras supporting continuous submeasures. Fundam. Math. 183 (2004), 169–183. · Zbl 1071.28004 · doi:10.4064/fm183-2-7
[18] E. K. van Douwen: The integers and topology. Handbook of Set-Theoretic Topology (K. Kunen, J. E. Vaughan, eds.). North-Holland, Amsterdam, 1984, pp. 111–167.
[19] B. Velickovic: ccc forcing and splitting reals. Isr. J. Math. 147 (2005), 209–220. · Zbl 1118.03046 · doi:10.1007/BF02785365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.