×

Emergence of the Dirac equation in the solitonic source of the Kerr spinning particle. (English) Zbl 1321.83018

Summary: The gravitational and electromagnetic (EM) fields of the Dirac electron are described by the Kerr-Newman (KN) solution. We elaborate a regular source of the KN solution which satisfies the requirement of flat space-time inside the source and realization of the exact KN solution outside the source. This requirement removes the conflict between gravity and quantum theory and determines many details of the source structure. In particular, we obtain that the KN source should forms a gravitating bag model, similar to the known MIT and SLAC bag models. As opposed to the known bag models, the self-interacting Higgs field should be confined inside the bag, while outside the bag the gauge symmetry should be unbroken to provide the external KN gravity. We show that the twistorial structure of the Kerr geometry (the Kerr theorem) determines the Dirac equation structure, resulting in a variable mass term which is generated inside the bag through interaction with the confined Higgs field. Similarly to the other bag models, ellipsoidal deformations of the KN bag creates a string-like structure of the dressed electron – a circular string located along the perimeter of the KN bag.

MSC:

83C22 Einstein-Maxwell equations
83C57 Black holes
35Q51 Soliton equations

References:

[1] G.’ t Hooft, “The black hole interpretation of string theory,” Nucl. Phys. B B 335, 138 (1990); C. F. E. Holzhey and F. Wilczek, “Black holes as elementary particles,” Nucl. Phys. B 380, 447 (1992); A. Sen, “Extremal black holes and elementary string states,” Mod. Phys. Lett. A 10, 2081 (1995). · doi:10.1016/0550-3213(90)90174-C
[2] B. Carter, “Global structure of the Kerr family of gravitational fields,” Phys. Rev. 174, 1559 (1968). · Zbl 0167.56301 · doi:10.1103/PhysRev.174.1559
[3] H. Keres, “On physical interpretation of the solutions to Einstein equations,” JETP 25(3), 534 (1967).
[4] W. Israel, “Source of the Kerrmetric,” Phys. Rev. D 2, 641 (1970). · Zbl 0197.26502 · doi:10.1103/PhysRevD.2.641
[5] V. Hamity, “An interior of the Kerrmetric,” Phys. Lett. A 56, 77 (1976). · doi:10.1016/0375-9601(76)90147-X
[6] C. A. López, “An extended model of the electron in general relativity,” Phys. Rev. D 30, 313 (1984). · doi:10.1103/PhysRevD.30.313
[7] A. Burinskii, “Regularized Kerr-Newman solution as a gravitating soliton,” J. Phys. A: Math. Theor. 43, 392001 (2010) [arXiv: 1003.2928]. · Zbl 1201.83019 · doi:10.1088/1751-8113/43/39/392001
[8] G. Rosen, “Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities,” J. Math. Phys. 9(7), 996 (1968), doi: 10.1063/1.1664693. · doi:10.1063/1.1664693
[9] S. Coleman, “Q-balls,” Nucl. Phys. B 262,(2) 263 (1985). · doi:10.1016/0550-3213(85)90286-X
[10] A. Kusenko, “Solitons in the supersymmetric extensions of the standard model,” Phys. Lett. B 405, 108 (1997). · doi:10.1016/S0370-2693(97)00584-4
[11] M. Volkov and E. Wöhnert, “Spinning Q-balls,” Phys. Rev. D 66, 085003 (2002). · doi:10.1103/PhysRevD.66.085003
[12] N. Graham, “An electroweak oscillon,” Phys. Rev. Lett 98, 101801 (2007). · doi:10.1103/PhysRevLett.98.101801
[13] J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton Univ. Press, Princeton, New Jersey, 1983). · Zbl 0516.53060
[14] Morris, J. R., No article title, Phys. Rev. D, 53, 2078 (1996) · doi:10.1103/PhysRevD.53.2078
[15] Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Vol. 3 (W. Freeman, San Francisco, 1973).
[16] Burinskii, A., No article title, First Award of Gravity Research Foundation, 2009, Gen. Rel. Gravit., 41, 2281 (2009) · Zbl 1176.83078
[17] P. A. M. Dirac, “Classical theory of radiating electrons,” Proc. R. Soc. London, Ser. A 167, 148 (1938). · Zbl 0023.42702 · doi:10.1098/rspa.1938.0124
[18] R. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769 (1949). · Zbl 0038.13302 · doi:10.1103/PhysRev.76.769
[19] A. Burinskii, “Stringlike structures in Kerr-Schild geometry: The <Emphasis Type=”Italic“>N = 2 string, twistors, and Calabi-Yau twofold,” Theor. Math. Phys. 177(2), 1492-1504 (2013). · Zbl 1298.81253 · doi:10.1007/s11232-013-0118-x
[20] G. C. Debney, R. P. Kerr, and A. Schild, “Solutions of the Einstein and Einstein-Maxwell equations,” J. Math. Phys. 10, 1842 (1969). · doi:10.1063/1.1664769
[21] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge Univ. Press, Cambridge, 1980). · Zbl 0449.53018
[22] R. Penrose, “Twistor algebra,” J. Math. Phys. 8, 345 (1967); R. Penrose and W. Rindler, Spinors and Space-Time, Vol. 2: Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge U.K., 1986), p. 501. · Zbl 0163.22602 · doi:10.1063/1.1705200
[23] A. Burinskii and G. Magli, “Kerr-Schild approach to the boosted Kerr solutions,” Phys. Rev. D 61 044017 (2000). · doi:10.1103/PhysRevD.61.044017
[24] S. Einstein and R. Finkelstein, “Lorentz covariance and the Kerr-Newman geometry,” Phys. Rev. D 15, 2721 (1977). · doi:10.1103/PhysRevD.15.2721
[25] V. B. Berestetsky, E. M. Lifshitz, and L. P. Pitaevsky, Quantum Electrodynamics (Course of Theoretical Physics, 4) (Pergamon, Oxford, UK, 1982).
[26] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, “New extended model of hadrons,” Phys. Rev. D 9, 3471 (1974). · doi:10.1103/PhysRevD.9.3471
[27] W.A. Bardeen, M. S. Chanowitz, S. D. Drell, M. Weinstein, and T.-M. Yang, “Heavy quarks and strong binding: A field theory of hadron structure,” Phys. Rev. D 11, 1094 (1974). · doi:10.1103/PhysRevD.11.1094
[28] R. C. Giles, “Semiclassical dynamics of the “SLAC” bag,“ Phys. Rev. D <Emphasis Type=”Bold”>13, 1670 (1976). · doi:10.1103/PhysRevD.13.1670
[29] P. A. M. Dirac, “An extensible model of the electron,” Proc. R. Soc. Lond. A 268, 57-67 (1962). · Zbl 0111.43702 · doi:10.1098/rspa.1962.0124
[30] A. Burinskii, “Some properties of the Kerr solution to low-energy string theory,” Phys. Rev. D 52, 5826 (1995) [hep-th/9504139]. · doi:10.1103/PhysRevD.52.5826
[31] A. Ya. Burinskii, “Kerr spinning particle, strings and superparticle models,” Phys. Rev. D 57, 2392 (1998). · doi:10.1103/PhysRevD.57.2392
[32] A. Burinskii, “Orientifold D-string in the source of the Kerr spinning particle,” Phys. Rev. D 68, 105004 (2003) [hep-th/0308096]. · doi:10.1103/PhysRevD.68.105004
[33] A. Burinskii, “Twistorial analyticity and three stringy systems of the Kerr spinning particle,” Phys. Rev. D 70, 086006 (2004) [hep-th/0406063]. · doi:10.1103/PhysRevD.70.086006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.