×

The effect of a normal electric field on wave propagation on a fluid film. (English) Zbl 1321.76076

Summary: Long-wavelength, small-amplitude disturbances on the surface of a fluid layer subject to a normal electric field are considered. In our model, a dielectric medium lies above a layer of perfectly conducting fluid, and the electric field is produced by parallel plate electrodes. The Reynolds number of the fluid flow is taken to be large, with viscous effects restricted to a thin boundary layer on the lower plate. The effects of surface tension and electric field enter the governing equation through an inverse Bond number and an electrical Weber number, respectively. The thickness of the lower fluid layer is assumed to be much smaller than the disturbance wavelength, and a unified analysis is presented allowing for the full range of scalings for the thickness of the upper dielectric medium. A variety of different forms of modified Korteweg-de Vries equation are derived, involving Hilbert transforms, convolution terms, higher order spatial derivatives, and fractional derivatives. Critical values are identified for the inverse Bond number and electrical Weber number at which the qualitative nature of the disturbances changes.{
©2014 American Institute of Physics}

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76A20 Thin fluid films
35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Craster, R.; Matar, O., Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81, 1131-1198 (2009) · doi:10.1103/RevModPhys.81.1131
[2] Griffing, E. M.; Bankoff, S. G.; Miksis, M. J.; Schluter, R. A., Electrohydrodynamics of thin flowing films, J. Fluids Eng., 128, 276-283 (2006) · doi:10.1115/1.2169811
[3] Hunter, J. K.; Vanden-Broeck, J. M., Solitary and periodic gravity capillary waves of finite-amplitude, J. Fluid Mech., 134, 205-219 (1983) · Zbl 0556.76018 · doi:10.1017/S0022112083003316
[4] Hammerton, P.; Bassom, A. P., The effect of surface stress on interfacial solitary wave propagation, Q. J. Mech. Appl. Math., 66, 395-416 (2013) · Zbl 1291.76120 · doi:10.1093/qjmam/hbt012
[5] Papageorgiou, D. T.; Petropoulos, P. G.; Vanden-Broeck, J. M., Gravity capillary waves in fluid layers under normal electric fields, Phys. Rev. E, 72, 051601 (2005) · doi:10.1103/PhysRevE.72.051601
[6] Gleeson, H.; Hammerton, P.; Papageorgiou, D. T.; Vanden-Broeck, J. M., A new application of the Korteweg-de Vries Benjamin-Ono equation in interfacial electrohydrodynamics, Phys. Fluids, 19, 031703 (2007) · Zbl 1146.76394 · doi:10.1063/1.2716763
[7] Easwaran, C. V., Solitary waves on a conducting fluid layer, Phys. Fluids, 31, 3442-3443 (1988) · Zbl 0654.76105 · doi:10.1063/1.866909
[8] Gonzalez, A.; Castellanos, A., Korteweg-deVries-Burgers equation for surface-waves in nonideal conducting liquids, Phys. Rev. E, 49, 2935-2940 (1994) · doi:10.1103/PhysRevE.49.2935
[9] Gonzalez, A.; Castellanos, A., Nonlinear waves in a viscous horizontal film in the presence of an electric field, J. Electrost., 40, 55-60 (1997) · doi:10.1016/S0304-3886(97)00014-4
[10] Castellanos, A.; Gonzalez, A., Nonlinear electrohydrodynamics of free surfaces, IEEE Trans. Dielectr. Electr. Insul., 5, 334-343 (1998) · doi:10.1109/94.689422
[11] Hammerton, P., Existence of solitary travelling waves in interfacial electrohydrodynamics, Wave Motion, 50, 676-686 (2013) · Zbl 1454.76106 · doi:10.1016/j.wavemoti.2013.01.003
[12] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1964) · Zbl 0171.38503
[13] Fornberg, B., A Practical Guide to Pseudospectral Methods (1999)
[14] Hammack, J. L.; Segur, H., The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments, J. Fluid Mech., 65, 289-314 (1974) · Zbl 0373.76010 · doi:10.1017/S002211207400139X
[15] Falcon, E.; Laroche, C.; Fauve, S., Observation of depression solitary surface waves on a thin fluid layer, Phys. Rev. Lett., 89, 204501 (2002) · doi:10.1103/PhysRevLett.89.204501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.