×

On the control and suppression of the Rayleigh-Taylor instability using electric fields. (English) Zbl 1321.76029

Summary: It is shown theoretically that an electric field can be used to control and suppress the classical Rayleigh-Taylor instability found in stratified flows when a heavy fluid lies above lighter fluid. Dielectric fluids of arbitrary viscosities and densities are considered and a theory is presented to show that a horizontal electric field (acting in the plane of the undisturbed liquid-liquid surface), causes growth rates and critical stability wavenumbers to be reduced thus shifting the instability to longer wavelengths. This facilitates complete stabilization in a given finite domain above a critical value of the electric field strength. Direct numerical simulations based on the Navier-Stokes equations coupled to the electrostatic fields are carried out and the linear theory is used to critically evaluate the codes before computing into the fully nonlinear stage. Excellent agreement is found between theory and simulations, both in unstable cases that compare growth rates and in stable cases that compare frequencies of oscillation and damping rates. Computations in the fully nonlinear regime supporting finger formation and roll-up show that a weak electric field slows down finger growth and that there exists a critical value of the field strength, for a given system, above which complete stabilization can take place. The effectiveness of the stabilization is lost if the initial amplitude is large enough or if the field is switched on too late. We also present a numerical experiment that utilizes a simple on-off protocol for the electric field to produce sustained time periodic interfacial oscillations. It is suggested that such phenomena can be useful in inducing mixing. A physical centimeter-sized model consisting of stratified water and olive oil layers is shown to be within the realm of the stabilization mechanism for field strengths that are approximately \(2\times 10^{4}V/m\).{
©2014 American Institute of Physics}

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E17 Interfacial stability and instability in hydrodynamic stability
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q35 PDEs in connection with fluid mechanics

References:

[1] Rayleigh, Lord, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc., 14, 170 (1883) · JFM 15.0848.02 · doi:10.1112/plms/s1-14.1.170
[2] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. London, Ser. A, 201, 192 (1950) · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[3] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, 428-453 (1961) · Zbl 0142.44103
[4] Babchin, A. J.; Frenkel, A. L.; Levich, B. G.; Sivashinsky, G. I., Non-linear saturation of Rayleigh-Taylor instability in thin films, Phys. Fluids, 26, 3159 (1983) · Zbl 0521.76046 · doi:10.1063/1.864083
[5] Halpern, D.; Frenkel, A. L., Saturated Rayleigh-Taylor instability of an oscillating Couette film flow, J. Fluid Mech., 446, 67 (2001) · Zbl 1029.76020 · doi:10.1017/S0022112001005596
[6] Papageorgiou, D. T.; Maldarelli, C.; Rumschitzki, D. S., Nonlinear interfacial stability of core-annular flows, Phys. Fluids A, 2, 340 (1990) · Zbl 0704.76060 · doi:10.1063/1.857784
[7] Lowry, B. J.; Steen, P. H., Stability of slender liquid bridges subjected to axial flows, J. Fluid Mech., 330, 189 (1997) · Zbl 0899.76183 · doi:10.1017/S0022112096003709
[8] Haimovich, O.; Oron, A., Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface, Phys. Fluids, 22, 032101 (2010) · Zbl 1188.76059 · doi:10.1063/1.3327932
[9] Weidner, D. E.; Schwartz, L. W.; Eres, M. H., Simulation of coating layer evolution and drop formation on horizontal cylinders, J. Colloid Interface Sci., 187, 243 (1997) · doi:10.1006/jcis.1996.4711
[10] Huang, Z.; De Louca, A.; Atherton, T. J.; Bird, M.; Rosenblatt, C., Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape, Phys. Rev. Lett., 99, 204502 (2007) · doi:10.1103/PhysRevLett.99.204502
[11] Melcher, J. R., Electrohydrodynamic and magnetohydrodynamic surface waves and instability, Phys. Fluids, 4, 1348 (1961) · doi:10.1063/1.1706223
[12] Melcher, J. R., Field-Coupled Surface Waves (1963)
[13] Taylor, G. I.; McEwan, A. D., The stability of a horizontal fluid interface in a vertical electric field, J. Fluid Mech., 22, 1 (1965) · Zbl 0129.20604 · doi:10.1017/S0022112065000538
[14] Schaffer, E.; Thurn-Albrecht, T.; Russell, T. P.; Steiner, U., Electrically induced structure formation and pattern transfer, Nature, 403, 874 (2000) · doi:10.1038/35002540
[15] Wu, N.; Russel, W. B., Micro- and nano-patterns created via electrohydrodynamic instabilities, Nano Today, 4, 180 (2009) · doi:10.1016/j.nantod.2009.02.002
[16] Melcher, J. R.; Warren, E. P., Continuum feedback control of a Rayleigh-Taylor type instability, Phys. Fluids, 9, 2085 (1966) · doi:10.1063/1.1761575
[17] Tilley, B. S.; Petropoulos, P. G.; Papageorgiou, D. T., Dynamics and rupture of planar electried liquid sheets, Phys. Fluids, 13, 3547 (2001) · Zbl 1184.76549 · doi:10.1063/1.1416193
[18] Savettaseranee, K.; Papageorgiou, D. T.; Petropoulos, P. G.; Tilley, B. S., The effect of electric fields on the rupture of thin viscous films by van der Waals forces, Phys. Fluids, 15, 641 (2003) · Zbl 1185.76321 · doi:10.1063/1.1538250
[19] Papageorgiou, D. T.; Vanden-Broeck, J.-M., Large-amplitude capilarry waves in electrified fluid sheets, J. Fluid Mech., 508, 71 (2004) · Zbl 1065.76205 · doi:10.1017/S0022112004008997
[20] Grandison, S.; Papageorgiou, D. T.; Petropoulos, P. G., Interfacial capillary waves in the presence of electric fields, Eur. J. Mech. B: Fluids, 26, 404 (2007) · Zbl 1370.76192 · doi:10.1016/j.euromechflu.2006.06.005
[21] Raco, R. J., Electrically supported column of liquid, Science, 160, 311 (1968) · doi:10.1126/science.160.3825.311
[22] Taylor, G. I., Electrically driven jets, Proc. R. Soc. London, Ser. A, 313, 453 (1969) · doi:10.1098/rspa.1969.0205
[23] Sankaran, S.; Saville, D. A., Experiments on the stability of a liquid bridge in an axial electric field, Phys. Fluids A, 5, 1081 (1993) · doi:10.1063/1.858625
[24] Ramos, A.; Gonzalez, H.; Castellanos, A., Experiments on dielectric liquid bridges subjected to axial electric fields, Phys. Fluids, 6, 3206 (1994) · doi:10.1063/1.868103
[25] Burcham, C. S.; Saville, D. A., The electrohydrodynamic stability of a liquid bridge: microgravity experiments on a bridge suspended in a dielectric gas, J. Fluid Mech., 405, 37 (2000) · Zbl 0955.76512 · doi:10.1017/S0022112099007193
[26] Barannyk, L. L.; Papageorgiou, D. T.; Petropoulos, P. G., Supression of Rayleigh-Taylor instability using electric fields, Math. Comput. Simul., 82, 1008 (2012) · Zbl 1243.78010 · doi:10.1016/j.matcom.2010.11.015
[27] Eldabe, N. T., Effect of a tangential electric field on Rayleigh-Taylor instability, J. Phys. Soc. Jpn., 58, 115 (1989) · doi:10.1143/JPSJ.58.115
[28] Joshi, A.; Radhakrishna, M. C.; Rudraiah, N., Rayleigh-Taylor instability in dielectric fluids, Phys. Fluids, 22, 064102 (2010) · Zbl 1190.76057 · doi:10.1063/1.3435342
[29] Popinet, S., Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572 (2003) · Zbl 1076.76002 · doi:10.1016/S0021-9991(03)00298-5
[30] Bagué, A.; Fuster, D.; Popinet, S.; Scardovelli, R.; Zaleski, S., Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem, Phys. Fluids, 22, 092104 (2010) · doi:10.1063/1.3483206
[31] Fuster, D.; Bagué, A.; Boeck, T.; Le Moyne, L.; Leboissetier, A.; Popinet, S.; Ray, P.; Scardovelli, R.; Zaleski, S., Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, Int. J. Multiphase Flow, 35, 550 (2009) · doi:10.1016/j.ijmultiphaseflow.2009.02.014
[32] López-Herrera, J. M.; Popinet, S.; Herrada, M. A., A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid, J. Comput. Phys., 230, 1939 (2011) · Zbl 1391.76427 · doi:10.1016/j.jcp.2010.11.042
[33] Woodson, H. H.; Melcher, J. R., Electromechanical Dynamics, Part III: Elastic and Fluid Media, 783-789 (1968)
[34] Saville, D. A., Electrohydrodyanmics: The Taylor-Melcher leaky dielectric model, Annu. Rev. Fluid Mech., 29, 27 (1997) · doi:10.1146/annurev.fluid.29.1.27
[35] Burcham, C. S.; Saville, D. A., Electrohydrodynamic stability: Taylor-Melcher theory for a liquid bridge suspended in a dielectric gas, J. Fluid Mech., 452, 163 (2002) · Zbl 1026.76020 · doi:10.1017/S0022112001006784
[36] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838 (2009) · Zbl 1280.76020 · doi:10.1016/j.jcp.2009.04.042
[37] Mahlmann, S.; Papageorgiou, D. T., Numerical study of electric field effects on the deformation of liquid drops in simple shear flow at arbitrary Reynolds number, J. Fluid Mech., 626, 367 (2009) · Zbl 1171.76465 · doi:10.1017/S0022112009006442
[38] Jackson, J. D., Classical Electrodynamics, 116-119 (1967)
[39] Stygar, W. A.; Savage, M. E.; Wagoner, T. C.; Bennett, L. F.; Corley, J. P.; Donovan, G. L.; Fehl, D. L.; Ives, H. C.; LeChien, K. R.; Leifeste, G. T.; Long, F. W.; McKee, R. G.; Mills, J. A.; Moore, J. K.; Ramirez, J. J.; Stoltzfus, B. S.; Struve, K. W.; Woodworth, J. R., Dielectric-breakdown tests of water at 6 MV, Phys. Rev. ST Accel. Beams, 12, 010402 (2009) · doi:10.1103/PhysRevSTAB.12.010402
[40] Marci, M.; Kolcunova, I., Electric breakdown strength measurement in liquid dielectrics, Proceedings of the 9th International Conference on Environment and Electrical Engineering (EEEIC), Prague, Czech Republic, 16-19 May 2010, 427 (2010)
[41] Conroy, D. T.; Matar, O. K.; Craster, R. V.; Papageorgiou, D. T., Breakup of an electrified, perfectly conducting, viscous thread in an AC field, Phys. Rev. E, 83, 066314 (2011) · doi:10.1103/PhysRevE.83.066314
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.