×

BV functions on convex domains in Wiener spaces. (English) Zbl 1321.28027

The authors summarize the contents of this paper in the abstract and introduction of the paper as follows: This paper is devoted to bounded variation (BV) functions in open sets of infinite dimensional separable Banach spaces endowed with Gaussian measures. BV functions defined in the whole space \(X\) have been introduced in [M. Fukushima, J. Funct. Anal. 174, No. 1, 227–249 (2000; Zbl 0978.60088)] and studied also in [L. Ambrosio et al., J. Funct. Anal. 258, No. 3, 785–813 (2010; Zbl 1194.46066)], [M. Fukushima and M. Hino, J. Funct. Anal. 183, No. 1, 245–268 (2001; Zbl 0993.60049)]. As in the finite dimensional case, they are strongly related to geometric measure theory and in particular to the theory of perimeters. In fact, they study functions of bounded variation defined in an abstract Wiener space \(X\), relating the variation of a function u on a convex open set \(\Omega \subset X\) to the behavior near \(t=0\) of \(T(t)u\), \(T(t)\) being the Ornstein-Uhlenbeck semigroup in \(\Omega\).

MSC:

28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
26B30 Absolutely continuous real functions of several variables, functions of bounded variation
47D07 Markov semigroups and applications to diffusion processes
60H07 Stochastic calculus of variations and the Malliavin calculus

References:

[1] Ambrosio, L., Figalli, A.: Surface measure and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces. Ann. Fac. Sci. Toulouse Math 20, 407-438 (2011) · Zbl 1228.60063 · doi:10.5802/afst.1297
[2] Ambrosio, L., Figalli, A., Runa, E.: On sets of finite perimeter in Wiener spaces: reduced boundary and convergence to halfspaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl 24, 111-122 (2013) · Zbl 1282.28002
[3] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs (2000) · Zbl 0957.49001
[4] Ambrosio, L., Maniglia, S., Miranda Jr, M., Pallara, D.: BV functions in abstract Wiener spaces. J. Funct. Anal. 258, 785-813 (2010) · Zbl 1194.46066 · doi:10.1016/j.jfa.2009.09.008
[5] Ambrosio, L., Miranda Jr, M., Pallara, D.: Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability, Discrete Contin. Dyn. Syst 28, 591-606 (2010) · Zbl 1196.28023
[6] Angiuli, L., Miranda Jr, M., Pallara, D., Paronetto, F.: BV functions and parabolic initial boundary value problems on domains, Ann. Mat. Pura Appl 188(4), 297-311 (2009) · Zbl 1177.35105 · doi:10.1007/s10231-008-0076-3
[7] Bakry, D., Émery, M.: Diffusions hypercontractives Seminaire de probabilités, XIX, 1983/84, vol. 1123, pp 177-206. Springer, Berlin (1985) · Zbl 0561.60080
[8] Bertoldi, M., Fornaro, S.: Gradient estimates in parabolic problems with unbounded coefficients. Studia Math. 165, 221-254 (2004) · Zbl 1065.35076 · doi:10.4064/sm165-3-3
[9] Bogachev, V.I.: Gaussian Measures. American Mathematical Society (1998) · Zbl 0938.28010
[10] Bogachev, V.I., Pilipenko, A.Yu., Shaposhnikov, A.V.: Sobolev functions on infinite-dimensional domains. J. Math. Anal. Appl. 419, 1023-1044 (2014) · Zbl 1310.46035 · doi:10.1016/j.jmaa.2014.05.020
[11] Bramanti, M., Miranda jr, M., Pallara, D.: Two characterization of BV functions on Carnot groups via the heat semigroup. Int. Math. Res. Not. 17, 3845-3876 (2012) · Zbl 1252.22005
[12] Caselles, V., Miranda Jr. M., Novaga, M.: Total variation and Cheeger sets in Gauss space. J. Funct. Anal. 259(6), 1491-1516 (2010) · Zbl 1195.49054 · doi:10.1016/j.jfa.2010.05.007
[13] Caselles, V., Lunardi, A., Miranda Jr, M., Novaga, M.: Perimeter of sublevel sets in infinite dimensional spaces. Adv. Calc. Var 5, 59-76 (2012) · Zbl 1257.49006 · doi:10.1515/acv.2011.010
[14] Celada, P., Lunardi, A.: Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Funct. Anal. 266, 1948-1987 (2014) · Zbl 1308.46042 · doi:10.1016/j.jfa.2013.11.013
[15] Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric deficit in Gauss space. Amer. J. Math. 133(1), 131-186 (2011) · Zbl 1219.28005 · doi:10.1353/ajm.2011.0005
[16] Da Prato, G., Lunardi, A.: Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differential Equations 198, 35-52 (2004) · Zbl 1046.35025 · doi:10.1016/j.jde.2003.10.025
[17] Dunford, N., Schwartz, J.T.: Linear operators I. Wiley (1958) · Zbl 0084.10402
[18] Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418-491 (1959) · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[19] Fukushima, M.: BV functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space. J. Funct. Anal. 174, 227-249 (2000) · Zbl 0978.60088 · doi:10.1006/jfan.2000.3576
[20] Fukushima, M., Hino, M.: On the space of BV functions and a Related Stochastic Calculus in Infinite Dimensions. J. Funct. Anal. 183, 245-268 (2001) · Zbl 0993.60049 · doi:10.1006/jfan.2000.3738
[21] Güneysu, B., Pallara, D.: Functions with bounded variation on a class of Riemannian manifolds with Ricci curvature unbounded from below, preprint · Zbl 1331.26019
[22] Hino, M.: Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space. J. Funct. Anal. 258, 1656-1681 (2010) · Zbl 1196.46029 · doi:10.1016/j.jfa.2009.06.033
[23] Hino, M.: Dirichlet spaces on H-convex sets in Wiener space. Bull. Sci. Math 135, 667-683 (2011) · Zbl 1235.31010 · doi:10.1016/j.bulsci.2011.07.008
[24] Hino, M., Uchida, H.: Reflecting Ornstein-Uhlenbeck processes on pinned path spaces, Proceedings of RIMS Workshop on Analysis, Stochastic, 111-128, Applications, RIMS Kokyuroku Bessatsu, B6, Kyoto (2008) · Zbl 1143.60050
[25] Miranda Jr, M., Novaga, M., Pallara, D.: An introduction to BV functions in Wiener spaces, Advanced Studies in Pure Mathematics, to appear · Zbl 1362.28016
[26] Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. Revised and enlarged ed., Academic Press (1980) · Zbl 0459.46001
[27] Qian, Z.: A gradient estimate on a manifold with convex boundary. Proc. Roy. Soc. Edinburgh Sect. A 127, 171-179 (1997) · Zbl 0885.58086 · doi:10.1017/S0308210500023568
[28] Savarè, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD \((K,∞)RCD(K,\infty )\) metric measure spaces Disc. Cont. Dyn. Sist. A 34, 1641-1661 (2014) · Zbl 1275.49087 · doi:10.3934/dcds.2014.34.1641
[29] Wang, F.-Y.: On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Related Fields 108, 87-101 (1997) · Zbl 0874.58092 · doi:10.1007/s004400050102
[30] Wang, F.-Y., Yan, L.: Gradient estimate on convex domains and applications. Proc. Amer. Math. Soc 141, 1067-1081 (2013) · Zbl 1300.60096 · doi:10.1090/S0002-9939-2012-11480-7
[31] Yosida, K.: Functional analysis. Sixth ed., Springer (1980) · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.