×

Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping. (English) Zbl 1320.74068

Summary: This article is a continuation of our earlier work in [the author, ibid. 63, No. 6, 1047–1065 (2012; Zbl 1254.74069)] on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function \(\mathbf{p}(\mathbf{x},\mathbf{U}_t)\), that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin-Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
93B15 Realizations from input-output data

Citations:

Zbl 1254.74069
Full Text: DOI

References:

[1] Avalos G., Toundykov D.: Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate. Nonlinear Anal.- Real 12, 2985-3013 (2011) · Zbl 1231.35253
[2] Borichev A., Tomilov Y.: Optimal polynomial decay rate of functions and operator semigroups. Math. Ann. 347, 455-478 (2010) · Zbl 1185.47044 · doi:10.1007/s00208-009-0439-0
[3] Cavalcanti M.M., Domingos Cavalcanti V.N., Falcão Nascimento F.A., Lasiecka I., Rodrigues J.H.: Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Z. Angew. Math. Phys. 65, 1189-1206 (2014) · Zbl 1316.35034 · doi:10.1007/s00033-013-0380-7
[4] Charão R.C., Oliveira J.C., Perla Menzala G.: Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete Cont. Dyn. Syst. Ser. A 25(3), 797-821 (2009) · Zbl 1176.35030 · doi:10.3934/dcds.2009.25.797
[5] Charão R.C., Oliveira J.C., Perla Menzala G.: Decay rates of magnetoelastic waves in an unbounded conductive medium. Electron. J. Differ. Equ. 127, 1-14 (2011) · Zbl 1233.35033
[6] Dautray R., Lions J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2: Functional and Variational Methods. Springer, Berlin (2000) · Zbl 0942.35001 · doi:10.1007/978-3-642-58090-1
[7] Dunkin J.W., Eringen A.C.: On the propagation of waves in an electromagnetic elastic solid. Int. J. Eng. Sci. 1, 461-495 (1963) · Zbl 0128.42704 · doi:10.1016/0020-7225(63)90004-1
[8] Duyckaerts T.: Stabilisation Haute Fréquence d’équationes aux Derivées Partielles Linéaires, Thèse de Doctorat. Université Paris XI, Orsay (2004)
[9] Fernandes A., Pouget J.: An accurate modelling of piezoelectric multi-layer plates. Eur. J. Mech. 21, 629-651 (2002) · Zbl 1062.74013 · doi:10.1016/S0997-7538(02)01224-X
[10] Fernández Sare H.D.: On the stability of Mindlin-Timoshenko plates. Q. Appl. Math. LXVII(2), 249-263 (2009) · Zbl 1175.35020 · doi:10.1090/S0033-569X-09-01110-2
[11] Grobbelaar-Van Dalsen M.: On a structural acoustic model with interface a Reissner-Mindlin plate or a Timoshenko beam. J. Math. Anal. Appl. 320, 121-144 (2006) · Zbl 1130.35367 · doi:10.1016/j.jmaa.2005.06.034
[12] Grobbelaar-Van Dalsen M.: Uniform stabilization of a nonlinear structural acoustic model with a Timoshenko beam interface. Math. Meth. Appl. Sci. 29, 1749-1766 (2006) · Zbl 1110.35010 · doi:10.1002/mma.737
[13] Grobbelaar-Van Dalsen M.: On a structural acoustic model which incorporates shear and thermal effects in the structural component. J. Math. Anal. Appl. 341, 1253-1270 (2008) · Zbl 1137.35436 · doi:10.1016/j.jmaa.2007.10.073
[14] Grobbelaar-Van Dalsen M.: Strong stabilization of a structural acoustic model which incorporates shear and thermal effects in the structural component. Math. Meth. Appl. Sci. 33, 1433-1445 (2010) · Zbl 1204.35043
[15] Grobbelaar-Van Dalsen M.: Strong stabilization of models incorporating the thermoelastic Reissner-Mindlin plate equations with second sound. Appl. Anal. 90, 1419-1449 (2011) · Zbl 1228.35052 · doi:10.1080/00036811.2010.530259
[16] Grobbelaar-Van Dalsen M.: On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model. Z. Angew. Math. Phys. 63, 1047-1065 (2012) · Zbl 1254.74069 · doi:10.1007/s00033-012-0206-z
[17] Grobbelaar-Van Dalsen M.: Stabilization of a thermoelastic Mindlin-Timoshenko plate model revisited. Z. Angew. Math. Phys. 64, 1305-1325 (2013) · Zbl 1310.74031 · doi:10.1007/s00033-012-0289-6
[18] Grobbelaar-Van Dalsen M.: Polynomial decay rates of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions. Z. Angew. Math. Phys. 66, 113-128 (2015) · Zbl 1317.74052 · doi:10.1007/s00033-013-0391-4
[19] Kim J.U., Renardy Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417-1429 (1987) · Zbl 0632.93057 · doi:10.1137/0325078
[20] Krommer M.: Piezoelectric vibrations of composite Reissner-Mindlin type plates. J. Sound Vib. 263, 871-891 (2003) · doi:10.1016/S0022-460X(02)01169-0
[21] Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics SIAM, Philadelphia (1989) · Zbl 0696.73034
[22] Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507-533 (1993) · Zbl 0803.35088
[23] Lions, J.L.: Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Masson, RMA 8, Paris (1988) · Zbl 0653.93002
[24] Mindlin R.D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31-38 (1951) · Zbl 0044.40101
[25] Mindlin R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316-323 (1951) · Zbl 0042.18603 · doi:10.1063/1.1699948
[26] Muñoz Rivera J.E., Racke R.: Polynomial stability in two-dimensional magneto-elasticity. IMA J. Appl. Math. 66, 359-384 (2001) · Zbl 1029.74020 · doi:10.1093/imamat/66.3.269
[27] Muñoz Rivera J.E., Racke R.: Mildly dissipative nonlinear Timoshenko systems. J. Math. Anal. Appl. 276, 248-278 (2002) · Zbl 1106.35333 · doi:10.1016/S0022-247X(02)00436-5
[28] Muñoz Rivera J.E., Racke R.: Global stability for damped Timoshenko sytems. Discrete Contin. Dyn. Syst. Ser. B 9(6), 1625-1639 (2003) · Zbl 1047.35023 · doi:10.3934/dcds.2003.9.1625
[29] Muñoz Rivera J.E., Portillo Oquendo H.: Asymptotic behavior on a Mindlin-Timoshenko plate with viscoelastic dissipation of memory type on the boundary. Funkcial. Ekvac. 46, 363-382 (2003) · Zbl 1259.74015 · doi:10.1619/fesi.46.363
[30] Muñoz Rivera J.E., Lima Santos M.de : Polynomial stability to three-dimensional magnetoelastic waves. Acta Appl. Math. 76, 265-281 (2003) · Zbl 1023.74022 · doi:10.1023/A:1023223517930
[31] Nakao M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403-417 (1996) · Zbl 0856.35084 · doi:10.1007/BF01444231
[32] Oliveira J.C., Charào R.C.: Stabilization of a locally damped thermoelastic system. Comput. Appl. Math. 27, 319-357 (2008) · Zbl 1171.35019
[33] Paria G.: On magneto-thermo-elastic plane waves. Proc. Cambr. Phil. Soc. 58, 527-531 (1962) · doi:10.1017/S030500410003680X
[34] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, New York (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[35] Perla Menzala G., Zuazua E.: Energy decay of magnetoelastic waves in a bounded conductive medium. Asymptot. Anal. 18, 349-362 (1998) · Zbl 0931.35017
[36] Pokojovy, M.: On stability of hyperbolic thermoelastic Reissner-Mindlin Timoshenko plates. MMA (to appear). doi:10.1002/mma.3140 (2014) · Zbl 1320.35059
[37] Purushotham C.M.: Magneto-elastic coupling effects on the propagation of harmonic waves in an electrically conducting elastic plate. Proc. Cambr. Phil. Soc. 63, 503-511 (1967) · Zbl 0161.44902 · doi:10.1017/S0305004100041451
[38] Racke R., Muñoz Rivera J.: Magneto-thermoelasticity, large time behaviour for linear systems. Adv. Differ. Equ. 6, 359-384 (2001) · Zbl 1023.74017
[39] Raposo C.A., Ferreira J., Santos M.L., Castro N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 7, 535-541 (2005) · Zbl 1072.74033 · doi:10.1016/j.aml.2004.03.017
[40] Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184-191 (1944) · Zbl 0061.42501
[41] Santos M.L., Almeida Júnior D.S., Muñoz Rivera J.E.: The stability number of the Timoshenko system with second sound. J. Differ. Equ. 253, 2715-2733 (2013) · Zbl 1250.74013 · doi:10.1016/j.jde.2012.07.012
[42] Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635-664 (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[43] Tébou L.R.T.: Well-posedness and energy decay estimates for the damped wave equation with Lr localizing coefficient. Comm. Partial Differ. Eqs. 23, 1839-1855 (1998) · Zbl 0918.35078
[44] Tébou L.R.T.: Stabilization of the wave equation with localized nonlinear damping. J. Differ. Equ. 145, 502-524 (1998) · Zbl 0916.35069 · doi:10.1006/jdeq.1998.3416
[45] Timoshenko S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. 41, 744-746 (1921) · doi:10.1080/14786442108636264
[46] Wehbe A., Youssef W.: Stabilization of the uniform Timoshenko beam by one locally distributed feedback. Appl. Anal. 88, 1067-1078 (2009) · Zbl 1172.74024 · doi:10.1080/00036810903156149
[47] Willson A.J.: The propagation of magneto-thermo-elastic plane waves. Proc. Cambr. Phil. Soc. 59, 483-488 (1963) · Zbl 0131.45101 · doi:10.1017/S0305004100037087
[48] Yang J.S.: Equations for elastic plates with partially electroded piezoelectric actuators in flexure with shear deformation and rotary inertia. J. Intell. Mat. Syst. Struct. 8, 444-451 (1997) · doi:10.1177/1045389X9700800507
[49] Yang J.S.: Equations for elastic plates with partially electroded piezoelectric actuators and higher order electric fields. Smart Mat. Struct. 8, 73-82 (1999) · doi:10.1088/0964-1726/8/1/008
[50] Yang J.S., Yang X., Turner A., Kopinski J.A., Pastore R.A.: Two-dimensional equations for electrostatic plates with relatively large shear deformations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 765-771 (2003) · doi:10.1109/TUFFC.2003.1214496
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.