×

A new framework of GPU-accelerated spectral solvers: collocation and Galerkin methods for systems of coupled elliptic equations. (A new framework of GPU-accelerated spectral solvers: collocation and Glerkin methods for systems of coupled elliptic equations.) (English) Zbl 1320.65183

Summary: Spectral methods are useful for applications that benefit from high-order precisions. However, if the same number of degrees of freedom is used, the computational cost of a spectral method is considerably higher than that of a general finite difference or finite element method. After the investigation in [F. Chen and J. Shen, “A GPU parallelized spectral method for elliptic equations in rectangular domains”, J. Comput. Phys. 250, 555–564 (2013)], we provide for the first time a framework of graphics processing units (GPU)-accelerated spectral methods for systems of coupled elliptic equations. The involved dense matrix computations, as the main obstacle for fast spectral methods on a traditional CPU, turns out to be an opportunity for high speedups on a many-core GPU. We obtain an order-of-magnitude speedup for solving 2-D and 3-D systems using a Kepler 20 GPU over a high-end multi-core processor, with two popular spectral methods, namely, the spectral collocation method and the spectral-Galerkin method. The new framework is applicable to systems of \(L\) coupled second-order equations with general boundary conditions, where \(L\) is an integer of moderate size. The ultimate goal is to apply the developed solver to complex and nonlinear time-dependent problems. As two interesting examples, a 2-D FitzHugh-Nagumo equation is solved with the spectral collocation method and a 3-D Cahn-Hilliard equation is solved with the spectral-Galerkin method. We thus demonstrate a practical solution for demanding problems that utilize high-order spatial resolution and longer run-times.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
35Q35 PDEs in connection with fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

CUDA
Full Text: DOI

References:

[1] Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49(1), 61-70 (1991) · doi:10.1016/0167-2789(91)90194-E
[2] Bauke, H., Keitel, C.H.: Accelerating the Fourier split operator method via graphics processing units. Comput. Phys. Commun. 182(12), 2454-2463 (2011) · Zbl 1261.65101 · doi:10.1016/j.cpc.2011.07.003
[3] Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[4] Chen, F., Shen, J.: Efficient spectral-galerkin methods for systems of coupled second-order equations and their applications. J. Comput. Phys. 231(15), 5016-5028 (2012) · Zbl 1250.65138 · doi:10.1016/j.jcp.2012.03.001
[5] Chen, F., Shen, J.: A GPU parallelized spectral method for elliptic equations in rectangular domains. J. Comput. Phys. 250, 555-564 (2013) · Zbl 1349.65641 · doi:10.1016/j.jcp.2013.05.031
[6] Dongarra, J.: Preface: basic linear algebra subprograms technical (blast) forum standard. Int. J. High Perform. Comput. Appl. 16(2), 115-115 (2002) · doi:10.1177/10943420020160020101
[7] Dongarra, J.; Kurzak, J.; Luszczek, P.; Tomov, S.; Michael, WB (ed.); Gallivan, KA (ed.); Gallopoulos, E. (ed.); Grama, A. (ed.); Philippe, B. (ed.); Saad, Y. (ed.); Saied, F. (ed.), Dense linear algebra on accelerated multicore hardware., 123-146 (2012), London · doi:10.1007/978-1-4471-2437-5_5
[8] Elling, T.J. : GPU-accelerated Fourier-continuation solvers and physically exact computational boundary conditions for wave scattering problems. PhD thesis, California Institute of Technology (2013) · Zbl 1175.65111
[9] FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 17(4), 257-278 (1955)
[10] Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445-466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[11] Gottlieb, D., Lustman, L.: The spectrum of the Chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20, 909-921 (1983) · Zbl 0537.65085 · doi:10.1137/0720063
[12] Gumerov, N.A., Karavaev, A.V., Sharma, A.S., Shao, X., Papadopoulos, K.D.: Efficient spectral and pseudospectral algorithms for 3D simulations of whistler-mode waves in a plasma. J. Comput. Phys. 230(7), 2605-2619 (2011) · Zbl 1316.76065 · doi:10.1016/j.jcp.2010.12.038
[13] Keener, J.P., Sneyd, J.: Mathematical Physiology: I: Cellular Physiology. Springer, London (2008) · Zbl 1273.92017
[14] Khanna, G.: High-precision numerical simulations on a CUDA GPU: kerr black hole tails. J. Sci. Comput. 56(2), 366-380 (2013) · Zbl 1273.83103 · doi:10.1007/s10915-012-9679-3
[15] Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228(21), 7863-7882 (2009) · Zbl 1175.65111 · doi:10.1016/j.jcp.2009.06.041
[16] Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra subprograms for fortran usage. ACM Trans. Math. Softw. 5(3), 308-323 (1979) · Zbl 0412.65022 · doi:10.1145/355841.355847
[17] Leclaire, S., El-Hachem, M., Trpanier, J.-Y. and Reggio, M.: High order spatial generalization of 2D and 3D isotropic discrete gradient operators with fast evaluation on GPUs. J. Sci. Comput., pp. 1-29 (2013) · Zbl 0537.65085
[18] Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061-2070 (1962) · doi:10.1109/JRPROC.1962.288235
[19] Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the FitzhughNagumo equation. Math. Comput. Simul. 79(7), 2258-2278 (2009) · Zbl 1166.65382 · doi:10.1016/j.matcom.2009.01.001
[20] Quarteroni, A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) · Zbl 1093.76002
[21] Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA. NVIDIA CUDA SDK Application Note (2009) · Zbl 0811.65097
[22] Shahbazi, K., Hesthaven, J.S., Zhu, X.: Multi-dimensional hybrid fourier continuationWENO solvers for conservation laws. J. Comput. Phys. 253, 209-225 (2013) · Zbl 1349.82118 · doi:10.1016/j.jcp.2013.07.009
[23] Shen, J.: Efficient spectral-galerkin method i. direct solvers of second-and fourth-order equations using legendre polynomials. SIAM J. Scient. Comput. 15(6), 1489-1508 (1994) · Zbl 0811.65097 · doi:10.1137/0915089
[24] Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, New York (2006) · Zbl 1234.65005
[25] Shen, J., Yang, X.: Numerical approximations of allen-cahn and cahn-hilliard equations. Discret. Contin. Dyn. Syst. Ser. A 28, 1669-1691 (2010) · Zbl 1201.65184 · doi:10.3934/dcds.2010.28.1669
[26] Shen, J.: Spectral Methods: Algorithms, Analysis and Applications (Springer Series in Computational Mathematics). Springer, Berlin (2010)
[27] Wadbro, E., Berggren, M.: Megapixel topology optimization on a graphics processing unit. SIAM Rev. 51(4), 707-721 (2009) · Zbl 1179.65079 · doi:10.1137/070699822
[28] Zhang, J., Yan, G.: A lattice boltzmann model for the reaction-diffusion equations with higher-order accuracy. J. Sci. Comput. 52(1), 1-16 (2012) · Zbl 1311.76114 · doi:10.1007/s10915-011-9530-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.