×

Almost periodic solutions for impulsive fractional differential equations. (English) Zbl 1320.34012

The authors analyze the existence of almost periodic solutions of the impulsive fractional differential equation \[ D^\alpha x(t)+ Ax(t)= F(t,x(t))+ \sum^\infty_{k=-\infty} G_k(x(t))\,\delta(t-\tau_k) \] in a Banach space \(X\). Here \(D^\alpha\) denotes the fractional time-derivative, \(\alpha\in(0,1]\), \(A\) is the infinitesimal generator of an analytic \(C_0\)-semigroup, \(G_k\) are continuous impulsive operators \(D(G_k)\subset X\to X\), \(\delta\) is Dirac’s delta function. It is shown that if \(\{\tau^j_k\}\), where \(\tau^j_k= \tau_{k+j}-\tau_k\), is uniformly almost periodic, \(F\), \(G_k\) are bounded, \(F(t,x)\) is almost periodic in \(t\), uniformly in \(x\), the sequence \(\{G_k(x)\}\) is almost periodic with respect to \(k\in Z\), uniformly in \(x\), and \(F\), \(G_k\) satisfy Lipschitz conditions, then if the Lipschitz constants of \(F\), \(G_k\) are sufficiently small, there exists a unique piecewise continuous almost periodic solution.

MSC:

34A08 Fractional ordinary differential equations
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
34A37 Ordinary differential equations with impulses
Full Text: DOI

References:

[1] Bainov DD, Differ. Integral Equ 1 pp 223– (1988)
[2] DOI: 10.1155/9789775945501 · doi:10.1155/9789775945501
[3] Mil’man VD, Siberian Math J 1 pp 233– (1960)
[4] DOI: 10.1016/j.nonrwa.2007.10.022 · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[5] DOI: 10.1093/imamci/18.2.153 · Zbl 0987.34040 · doi:10.1093/imamci/18.2.153
[6] DOI: 10.3792/pjaa.80.198 · Zbl 1078.34511 · doi:10.3792/pjaa.80.198
[7] DOI: 10.1007/978-3-642-27546-3 · Zbl 1255.34001 · doi:10.1007/978-3-642-27546-3
[8] DOI: 10.1515/9783110221824 · doi:10.1515/9783110221824
[9] DOI: 10.1007/s10440-008-9356-6 · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[10] DOI: 10.1155/S1048953304311020 · Zbl 1081.34053 · doi:10.1155/S1048953304311020
[11] El-Borai MM, Int J Contemp Math Sci 4 pp 1373– (2009)
[12] DOI: 10.1007/978-3-642-14574-2 · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[13] Kilbas AA, Theory and applications of fractional differential equations (2006)
[14] Lakshmikantham V, Theory of fractional dynamic systems (2009)
[15] DOI: 10.1016/j.na.2011.05.059 · Zbl 1223.93059 · doi:10.1016/j.na.2011.05.059
[16] DOI: 10.1016/j.nahs.2009.09.002 · Zbl 1187.34038 · doi:10.1016/j.nahs.2009.09.002
[17] DOI: 10.1016/j.mcm.2011.07.037 · Zbl 1255.34006 · doi:10.1016/j.mcm.2011.07.037
[18] DOI: 10.4310/DPDE.2011.v8.n4.a3 · Zbl 1264.34014 · doi:10.4310/DPDE.2011.v8.n4.a3
[19] DOI: 10.1016/j.camwa.2011.12.064 · Zbl 1268.34032 · doi:10.1016/j.camwa.2011.12.064
[20] Alzabut JO, Bound Value Probl (2009)
[21] Gelfand IM, Generalized functions (1959)
[22] Daleckii YL, Stability of solutions of differential equations in Banach space (1974)
[23] DOI: 10.1007/978-1-4612-5561-1 · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.