×

A simple method for determining large deflection states of arbitrarily curved planar elastica. (English) Zbl 1319.74014

The authors present a method for determining large deflections of arbitrary curved planar elastica. The elastica is modeled by Bernoulli-Euler theory. The basic idea of the method is to divide beams into series of segments where each of them can be deformed into large deflection state. The problem is solved using Runge-Kutta-Fehlberg integration. Several examples are presented that may be used to compare the method presented here with other (more complicated) methods.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S20 Finite difference methods applied to problems in solid mechanics

References:

[1] Brojan, M., Sitar, M., Kosel, F.: On static stability of nonlinearly elastic Euler’s columns obeying the modified Ludwick’s Law. Int. J. Struct. Stab. Dyn. 12(6), 1250077 (1) -1250077 (19) (2012) · Zbl 1359.74194
[2] Campanile L.F., Hasse A.: A simple and effective solution of the elastica problem. J. Mech. Eng. Sci. 222(12), 2513-2516 (2008) · doi:10.1243/09544062JMES1244
[3] Chen L.: An integral approach for large deflection cantilever beams. Int. J. Non-Linear Mech. 45, 301-305 (2010) · doi:10.1016/j.ijnonlinmec.2009.12.004
[4] Dado M., Al-Sadder S.: A new technique for large deflection analysis of non-prismatic cantilever beams. Mech. Res. Commun. 32(6), 692-703 (2005) · Zbl 1192.74210 · doi:10.1016/j.mechrescom.2005.01.004
[5] Holden J.T.: On the finite deflections of thin beams. Int. J. Solid Struct. 8(8), 1051-1055 (1972) · Zbl 0235.73026 · doi:10.1016/0020-7683(72)90069-8
[6] Levyakov S.V., Kuznetsov V.V.: Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads. Acta Mech. 211(1-2), 73-87 (2010) · Zbl 1200.74061 · doi:10.1007/s00707-009-0213-0
[7] Vaz M.A., Silva D.F.C.: Post-buckling analysis of slender elastic rods subjected to terminal forces. Int. J. Non-Linear Mech. 38(4), 483-492 (2003) · Zbl 1346.74069 · doi:10.1016/S0020-7462(01)00072-5
[8] Wang C.Y.: Post-buckling of a clamped-simply supported elastica. Int. J. Non-Linear Mech. 32(6), 1115-1122 (1997) · Zbl 0891.73034 · doi:10.1016/S0020-7462(96)00125-4
[9] Bunce J.W., Brown E.H.: Non-linear bending of thin, ideally elastic rods. Int. J. Mech. Sci. 18(9-10), 435-441 (1976) · doi:10.1016/0020-7403(76)90038-2
[10] De Bona F., Zelenika S.: A generalized elastica-type approach to the analysis of large displacements of spring-strips. J. Mech. Eng. Sci. 211(7), 509-517 (1997) · doi:10.1243/0954406971521890
[11] Nallathambi A.K., Rao C.L., Srinivasan S.M.: Large deflection of constant curvature cantilever beam under follower load. Int. J. Mech. Sci. 52, 440-445 (2010) · doi:10.1016/j.ijmecsci.2009.11.004
[12] Shinohara A.: Large deflection of a circular C-shaped spring. Int. J. Mech. Sci. 21, 179-186 (1979) · doi:10.1016/0020-7403(79)90022-5
[13] Somervaille I.: Quadrature matrices and elastica problems. Comp. Method App. Mech. Eng. 69(3), 345-354 (1988) · Zbl 0629.73027 · doi:10.1016/0045-7825(88)90046-1
[14] Srpčič S., Saje M.: Large deformations of thin curved plane beam of constant initial curvature. Int. J. Mech. Sci. 28(5), 275-287 (1986) · Zbl 0588.73098 · doi:10.1016/0020-7403(86)90041-X
[15] Wang C.Y., Watson L.T.: On the large deformations of C-shaped springs. Int. J. Mech. Sci. 22, 395-400 (1980) · Zbl 0435.73044 · doi:10.1016/0020-7403(80)90009-0
[16] Watson L.T., Wang C.Y.: A homotopy method applied to elastica problems. Int. J. Solids Struct. 17(1), 29-37 (1981) · Zbl 0452.73071 · doi:10.1016/0020-7683(81)90044-5
[17] Dado M., Al-Saddar S.: The elastic spring behavior of a rhombus frame constructed from non-prismatic beams under large deflection. Int. J. Mech. Sci. 48, 958-968 (2006) · Zbl 1192.74241 · doi:10.1016/j.ijmecsci.2006.03.012
[18] Faulkner M.G., Lipsett A.W., Tam V.: On the use of a segmental shooting technique for multiple solutions of planar elastica problems. Comp. Methods App. Mech. Eng. 110(3-4), 221-236 (1993) · Zbl 0847.73073 · doi:10.1016/0045-7825(93)90162-Q
[19] Lee S.L., Manuel F.S., Rossow E.C.: Large deflections and stability of elastic frames. J. Eng. Mech. Div. 94(2), 521-548 (1968)
[20] Manuel F.S., Lee S.L.: Flexible bars subjected to arbitrary discrete loads and boundary conditions. J. Franklin Inst. 285(6), 452-474 (1968) · doi:10.1016/0016-0032(68)90050-1
[21] Mattiasson K.: Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals. Int. J. Num. Methods Eng. 17(1), 145-153 (1981) · Zbl 0453.73088 · doi:10.1002/nme.1620170113
[22] Phungpaingam B., Chucheepsakul S.: Postbuckling of elastic beam subjected to a concentrated moment within span length of beam. Acta Mech. 23(3), 287-296 (2007) · Zbl 1202.74063 · doi:10.1007/s10409-007-0065-6
[23] Saje M.: Finite element formulation of finite planar deformation of curved elastic beams. Comput. Struct. 39(3-4), 327-337 (1991) · Zbl 0825.73716 · doi:10.1016/0045-7949(91)90030-P
[24] Thacker W.I., Wang C.Y., Watson L.T.: Effect of flexible joints on the stability and large deflections of a triangular frame. Acta Mech. 200(1-2), 11-24 (2008) · Zbl 1155.74346 · doi:10.1007/s00707-007-0574-1
[25] Brojan M., Cebron M., Kosel F.: Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end. Acta Mech. Sin. 28(3), 863-869 (2012) · doi:10.1007/s10409-012-0053-3
[26] Brojan M., Kosel F.: Approximative formula for post-buckling analysis of nonlinearly elastic columns with superellipsoidal cross-sections. J. Reinf. Plast. Comp. 30(5), 409-415 (2011) · doi:10.1177/0731684410397897
[27] Brojan M., Videnic T., Kosel F.: Large deflections of nonlinearly elastic non-prismatic cantilever beams made from materials obeying the generalized Ludwick constitutive law. Meccanica 44, 733-739 (2009) · Zbl 1258.74125 · doi:10.1007/s11012-009-9209-z
[28] Burden R.L., Faires J.D.: Numerical Analysis, 9th ed. Brooks/Cole, Boston (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.