×

The algebraic equalities and their topological consequences in weighted spaces. (English) Zbl 1319.46021

The paper deals with weighted Banach, Fréchet or (LB)-spaces of holomorphic functions (in fact, the authors consider a more general class of objects for which holomorphic functions are one of the examples). The authors use the following notation: \(v\) – a weight on a locally compact, \(\sigma\)-compact Hausdorff space \(X\), \(A(X)\) – a semi-Montel subspace of \(C(X)\), \[ A_v(X):=\{f\in A(X):\,\,\|f\|_v:=\sup_{x\in X}\frac{|f(x)|}{v(x)}<\infty\}, \]
\[ A_{v0}(X):=\{f\in A(X):\,\,\frac{f(x)}{v(x)} \text{ vanishes at infinity on } X\}. \] For a decreasing (increasing) sequence \((v_n)_n\) of weights, they denote \(AV(X):=\text{proj}_nA_{v_n}(X)\) (\(\mathcal{V}A(X):=\text{ind}_n A_{v_n}(X)\)). The spaces \(AV_0(X)\) and \(\mathcal{V}A_0(X)\) are defined similarly.
The following results are proved. The algebraic equality \(A_v(X)=A_{v0}(X)\) [\(AV(X)=AV_0(X)\), \(\mathcal{V}A(X)=\mathcal{V}A_0(X)\)] implies that the respective spaces are finite dimensional [Montel, (DFS)] – Theorem 3.3. Under an additional condition (called (CD)) they also prove the converse – Theorem 3.8.
The above results strengthen those of [K. D. Bierstedt and J. Bonet, North-Holland Math. Stud. 170, 113–133 (1992; Zbl 0804.46007)]; [K. D. Bierstedt et al., Mich. Math. J. 40, No. 2, 271–297 (1993; Zbl 0803.46023)]; [K. D. Bierstedt and W. H. Summers, J. Aust. Math. Soc., Ser. A 54, No. 1, 70–79 (1993; Zbl 0801.46021)].

MSC:

46E10 Topological linear spaces of continuous, differentiable or analytic functions
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
Full Text: DOI

References:

[1] Abanin, A. V.; Tien, Pham Trong, Erratum: Painlevè null sets, dimension and compact embedding of weighted holomorphic spaces, Vol. 213(2) (2012), 169-187, Studia Math., 2, 287-288 (2013), See also: · Zbl 1275.30033
[2] Bierstedt, K. D., A survey of some results and open problems in weighted inductive limits and projective description for spaces of holomorphic functions, Bull. Soc. Roy. Sci. Liége, 70, 167-182 (2001) · Zbl 1030.46002
[3] Bierstedt, K. D.; Bonet, J., Some recent results on \(V C(X)\), (Advances in the Theory of Fréchet Spaces. Advances in the Theory of Fréchet Spaces, Istanbul, 1988. Advances in the Theory of Fréchet Spaces. Advances in the Theory of Fréchet Spaces, Istanbul, 1988, NATO Adv. Sci. Inst. Ser. C, vol. 287 (1989), Kluwer Acad. Publ.), 181-194 · Zbl 0716.46026
[4] Bierstedt, K. D.; Bonet, J., Biduality in Fréchet and (LB)-spaces, (Progress in Functional Analysis. Progress in Functional Analysis, Math. Stud., vol. 170 (1992), North-Holland: North-Holland Amsterdam), 113-133 · Zbl 0804.46007
[5] Bierstedt, K. D.; Bonet, J., Weighted (LB)-spaces of holomorphic functions: \(V H(G) = V_0 H(G)\) and completeness of \(V_0 H(G)\), J. Math. Anal. Appl., 323, 747-767 (2006) · Zbl 1119.46028
[6] Bierstedt, K. D.; Bonet, J.; Galbis, A., Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J., 40, 271-297 (1993) · Zbl 0803.46023
[7] Bierstedt, K. D.; Bonet, J.; Taskinen, J., Associated weights and spaces of holomorphic functions, Studia Math., 127, 137-168 (1998) · Zbl 0934.46027
[8] Bierstedt, K. D.; Meise, R.; Summers, W. H., A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272, 107-160 (1982) · Zbl 0599.46026
[9] Bierstedt, K. D.; Summers, W. H., Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A, 54, 70-79 (1993) · Zbl 0801.46021
[10] Bonet, J.; Wolf, E., A note on weighted Banach spaces of holomorphic functions, Arch. Math., 81, 650-654 (2003) · Zbl 1047.46018
[11] Makarov, B. M., Inductive limits of normed linear spaces, Vestn. Leningr. Gos. Univ., 20, 50-58 (1965), (in Russian) · Zbl 0146.36701
[12] Meise, R.; Vogt, D., Introduction to Functional Analysis, Grad. Texts in Math., vol. 2 (1997), Clarendon · Zbl 0924.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.