×

Analysis of stable periodic orbits in the one dimensional linear piecewise-smooth discontinuous map. (English) Zbl 1319.37032

Summary: In this paper, we consider one dimensional linear piecewise-smooth discontinuous maps. It is well known that stable periodic orbits exist for such maps, in some parameter region. It is also known that the corresponding bifurcation phenomena (termed as period adding bifurcation) exhibit a special structure. In the last couple of years, several authors have analyzed this structure using border collision bifurcation curves and given the characterization for various parameter regions. In this paper, we have analyzed a specific parameter range employing a different approach. We show that this approach enables one to pose some interesting questions like: what is the number of distinct periodic orbits of any given cardinality? We prove that there are precisely \(\phi(n)\) distinct orbits of period \(n\), where \(\phi\) is the Euler’s totient function. We propose an algorithm which calculates the location of fixed points of all these \(\phi(n)\) distinct orbits and gives the precise range of existence of these orbits with respect to the parameters. Further, we show how the amount of computations required to find these ranges of existence can be optimized.{
©2012 American Institute of Physics}

MSC:

37E05 Dynamical systems involving maps of the interval
37E15 Combinatorial dynamics (types of periodic orbits)
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems

References:

[1] Deane J. H. B., Power Electronics Specialists Conference pp 34– (1990)
[2] DOI: 10.1109/81.260215 · doi:10.1109/81.260215
[3] DOI: 10.1103/PhysRevE.70.036201 · doi:10.1103/PhysRevE.70.036201
[4] DOI: 10.1016/0021-8928(70)90064-X · Zbl 0224.34021 · doi:10.1016/0021-8928(70)90064-X
[5] DOI: 10.1016/0167-2789(92)90087-4 · Zbl 0760.58031 · doi:10.1016/0167-2789(92)90087-4
[6] DOI: 10.1103/PhysRevE.49.1073 · doi:10.1103/PhysRevE.49.1073
[7] DOI: 10.1016/S0960-0779(98)00317-8 · Zbl 0967.37030 · doi:10.1016/S0960-0779(98)00317-8
[8] di Bernardo M., Piecewise-Smooth Dynamical Systems: Theory and Applications (2008) · Zbl 1146.37003
[9] DOI: 10.1109/81.841921 · Zbl 0968.37013 · doi:10.1109/81.841921
[10] DOI: 10.1098/rspa.2006.1735 · Zbl 1133.37317 · doi:10.1098/rspa.2006.1735
[11] DOI: 10.1063/1.3227645 · Zbl 1317.34077 · doi:10.1063/1.3227645
[12] DOI: 10.1088/0951-7715/21/5/010 · Zbl 1158.37012 · doi:10.1088/0951-7715/21/5/010
[13] DOI: 10.1103/PhysRevE.75.066205 · doi:10.1103/PhysRevE.75.066205
[14] DOI: 10.1088/0951-7715/24/9/012 · Zbl 1234.37031 · doi:10.1088/0951-7715/24/9/012
[15] DOI: 10.3934/dcdsb.2010.13.249 · Zbl 1187.37053 · doi:10.3934/dcdsb.2010.13.249
[16] DOI: 10.1007/s10614-011-9284-9 · Zbl 1247.91066 · doi:10.1007/s10614-011-9284-9
[17] DOI: 10.1109/81.847870 · Zbl 1050.37511 · doi:10.1109/81.847870
[18] DOI: 10.1016/j.matcom.2004.12.003 · Zbl 1070.65132 · doi:10.1016/j.matcom.2004.12.003
[19] DOI: 10.1007/s11071-007-9318-y · Zbl 1170.70351 · doi:10.1007/s11071-007-9318-y
[20] DOI: 10.1142/S0218127408020495 · Zbl 1143.37306 · doi:10.1142/S0218127408020495
[21] DOI: 10.1016/j.physd.2010.02.015 · Zbl 1189.37020 · doi:10.1016/j.physd.2010.02.015
[22] DOI: 10.1007/s11071-011-9978-5 · Zbl 1242.37035 · doi:10.1007/s11071-011-9978-5
[23] DOI: 10.1103/PhysRevE.70.026222 · doi:10.1103/PhysRevE.70.026222
[24] DOI: 10.3934/dcdsb.2005.5.881 · Zbl 1087.37029 · doi:10.3934/dcdsb.2005.5.881
[25] DOI: 10.1016/j.chaos.2011.03.004 · Zbl 1236.37019 · doi:10.1016/j.chaos.2011.03.004
[26] DOI: 10.1016/j.cnsns.2010.06.012 · Zbl 1221.37086 · doi:10.1016/j.cnsns.2010.06.012
[27] DOI: 10.3934/dcdsb.2011.16.547 · Zbl 1225.37060 · doi:10.3934/dcdsb.2011.16.547
[28] DOI: 10.1142/S0218127403008533 · Zbl 1057.37050 · doi:10.1142/S0218127403008533
[29] DOI: 10.1088/0951-7715/19/3/001 · Zbl 1087.37027 · doi:10.1088/0951-7715/19/3/001
[30] DOI: 10.1088/0951-7715/19/8/007 · Zbl 1190.37042 · doi:10.1088/0951-7715/19/8/007
[31] Farey J., Philos. Mag. J. 47 pp 385– (1816)
[32] DOI: 10.1142/S021812741002788X · Zbl 1208.37026 · doi:10.1142/S021812741002788X
[33] DOI: 10.1016/j.chaos.2011.02.001 · doi:10.1016/j.chaos.2011.02.001
[34] DOI: 10.1142/S0218127410027581 · Zbl 1204.37037 · doi:10.1142/S0218127410027581
[35] DOI: 10.1134/S1560354710060055 · Zbl 1209.37044 · doi:10.1134/S1560354710060055
[36] DOI: 10.1155/2011/681565 · Zbl 1231.37023 · doi:10.1155/2011/681565
[37] DOI: 10.1142/S021812741002757X · Zbl 1204.37039 · doi:10.1142/S021812741002757X
[38] DOI: 10.1007/978-3-642-59281-2 · doi:10.1007/978-3-642-59281-2
[39] DOI: 10.1063/1.3407482 · doi:10.1063/1.3407482
[40] DOI: 10.1063/1.3687017 · Zbl 1331.92041 · doi:10.1063/1.3687017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.