×

Exact solutions of nonlinear wave equations using \((G^\prime/G, 1/G)\)-expansion method. (English) Zbl 1319.34008

Summary: The \((G^\prime/G, 1/G)\)-expansion method with the aid of Maple is used to obtain new exact travelling wave solutions of the Hamiltonian amplitude equation and the Broer-Kaup equations arise in the analysis of various problems in fluid mechanics, theoretical physics. The travelling wave solutions are expressed by hyperbolic functions, trigonometric functions and rational functions. The method demonstrates power, reliability and efficiency. The method also presents a wider applicability for handling nonlinear wave equations.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
35C07 Traveling wave solutions
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
35L05 Wave equation

Software:

Maple

References:

[1] Savescu, M.; Johnson, S.; Kara, A. H.; Crutcher, S. H.; Kohl, R.; Biswas, A., Conservation laws for optical solitons with spatio-temporal dispersion, J. Electromagnet. Waves Appl., 28, 2, 242-252 (2014)
[2] Biswas, A.; Milovic, D.; Savescu, M.; Mahmood, M. F.; Khan, K. R.; Kohl, R., Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger’s equation by semi-inverse variational principle, J. Nonlinear Opt. Phys. Mater., 12, 4, 1250054 (2012)
[3] Savescu, M.; Khan, K. R.; Naruka, P.; Jafari, H.; Moraru, L.; Biswas, A., Optical solitons in photonic nanowaveguides with an improved nonlinear Schrödinger’s equation, J. Comput. Theor. Nanosci., 10, 5, 1182-1191 (2013)
[4] Savescu, M.; Khan, K. R.; Kohl, R. W.; Moraru, L.; Yildirim, A.; Biswas, A., Optical soliton perturbation with improved nonlinear Schrödinger’s equation in nanofibers, J. Nanoelectron. Optoelectron., 8, 2, 208-220 (2013)
[5] Xu, Y.; Jovanoski, Z.; Bouasla, A.; Triki, H.; Moraru, L.; Biswas, A., Optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity, J. Nonlinear Opt. Phys. Mater., 22, 3, 1350035 (2013)
[6] Biswas, A.; Khan, K.; Rahman, A.; Yildirim, A.; Hayat, T.; Aldossary, O. M., Bright and dark optical solitons in birefringent fibers with Hamiltonian perturbations and Kerr law nonlinearity, J. Optoelectron. Adv. Mater., 14, 7-8, 571-576 (2012)
[7] Kohl, R.; Biswas, A.; Milovic, D.; Zerrad, E., Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 40, 4, 647-662 (2008)
[8] Biswas, A.; Fessak, M.; Johnson, S.; Beatrice, S.; Milovic, D.; Jovanoski, Z.; Kohl, R.; Majid, F., Optical soliton perturbation in non-Kerr law media: travelling wave solution, Opt. Laser Technol., 44, 1, 1775-1780 (2012)
[9] Triki, H.; Hayat, T.; Aldossary, O. M.; Biswas, A., Bright and dark solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients, Opt. Laser Technol., 44, 7, 2223-2231 (2012)
[10] Triki, H.; Crutcher, S.; Yildirim, A.; Hayat, T.; Aldossary, O. M.; Biswas, A., Bright and dark solitons of the modified complex Ginzburg-Landau equation with parabolic and dual-power law nonlinearity, Romanian Rep. Phys., 64, 2, 367-380 (2012)
[11] Liu, G. T.; Fan, T. Y., New applications of developed Jacobi elliptic function expansion methods, Phys. Lett. A, 345, 161-166 (2005) · Zbl 1345.35091
[12] Hirota, R., Direct method of finding exact solutions of nonlinear evolution equations, (Bullough, R.; Caudrey, P., Backlund Transformations (1980), Springer: Springer Berlin), 1157
[13] Matveev, V. B.; Salle, M. A., Darboux Transformation and Solitons (1991), Springer: Springer Berlin · Zbl 0744.35045
[14] Chow, K. W., A class of exact periodic solutions of nonlinear envelope equation, J. Math. Phys., 36, 4125-4137 (1995) · Zbl 0848.35122
[15] Bluman, G. W.; Kumei, S., Symmetries and Differential Equations (1989), Springe Verlag: Springe Verlag New York · Zbl 0718.35004
[16] Khalique, C. M.; Biswas, A., A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 14, 12, 4033-4040 (2009) · Zbl 1221.35396
[17] Wang, M. L., Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199, 169-172 (1995) · Zbl 1020.35528
[18] Fan, E.; Zhang, H., A note on the homogeneous balance method, Phys. Lett. A, 246, 403-406 (1998) · Zbl 1125.35308
[19] Yan, C. T., A simple transformation for nonlinear waves, Phys. Lett. A, 224, 77-84 (1996) · Zbl 1037.35504
[20] Bekir, A., New solitons and periodic wave solutions for some nonlinear physical models by using sine-cosine method, Phys. Scripta, 77, 4, 045008 (2008) · Zbl 1306.76009
[21] Wazwaz, A. M., A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modell., 40, 499-508 (2004) · Zbl 1112.35352
[22] He, J. H.; Abdou, M. A., New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Soliton Fract., 34, 1421-1429 (2007) · Zbl 1152.35441
[23] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos Soliton Fract., 30, 700-708 (2006) · Zbl 1141.35448
[24] Özis, T.; Aslan, I., Exact and explicit solutions to the (3 + 1)-dimensional Jimbo-Miwa equation via the Exp-function method, Phys. Lett. A, 372, 7011-7015 (2008) · Zbl 1227.37019
[25] Ablowitz, M. J.; Segur, H., Solitons and Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0299.35076
[26] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[27] Vakhnenko, V. O.; Parkes, E. J.; Morrison, A. J., A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton Fract., 17, 4, 683-692 (2003) · Zbl 1030.37047
[28] Wazwaz, A. M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188, 1467-1475 (2007) · Zbl 1119.65100
[29] Malfliet, W.; Hereman, W., The tanh method. I: exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563-568 (1996) · Zbl 0942.35034
[30] Bekir, A.; Ünsal, Ö., Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method, Phys. Scripta, 85, 065003 (2012) · Zbl 1277.35110
[31] Bekir, A.; Ünsal, Ö., Analytic treatment of nonlinear evolution equations using first integral method, Pramana J. Phys., 79, 3-17 (2012)
[32] Eslami, M.; Vajargah, B. F.; Mirzazadeh, M.; Biswas, A., Application of first integral method to fractional partial differential equations, Indian J. Phys., 88, 2, 177-184 (2014)
[33] Eslami, M.; Mirzazadeh, M., Topological 1-soliton solution of nonlinear Schrodinger equation with dual-power law nonlinearity in nonlinear optical fibers, Eur. Phys. J. Plus, 128-140 (2013)
[34] Mirzazadeh, M.; Eslami, M., Exact solutions for nonlinear variants of Kadomtsev-Petviashvili (n, n) equation using functional variable method, Pramana J. Phys., 81, 6, 911-924 (2013)
[35] Eslami, M.; Mirzazadeh, M.; Biswas, A., Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time dependent coefficients by simplest equation approach, J. Mod. Opt., 60, 19, 1627-1636 (2013)
[36] Yildirim, A.; Samiei Paghaleh, A.; Mirzazadeh, M.; Moosaei, H.; Biswas, A., New exact traveling wave solutions for DS-I and DS-II equations, Nonlinear Anal.: Modell. Control., 17, 3, 369-378 (2012) · Zbl 1308.35052
[37] Wang, M.; Li, X.; Zhang, J., The \((G^\prime / G)\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372, 417-423 (2008) · Zbl 1217.76023
[38] Liu, X.; Tian, L.; Wu, Y., Application of \((G^\prime / G)\)-expansion method to two nonlinear evolution equations, Appl. Math. Comput., 217, 1376-1384 (2010) · Zbl 1203.65200
[39] Zuo, J. M., Application of the extended \((G^\prime / G)\)-expansion method to solve the Pochhammer-Chree equations, Appl. Math. Comput., 217, 376-383 (2010) · Zbl 1277.35022
[40] Li, L. X.; Li, E. Q.; Wang, M. L., The \((G^\prime / G, 1 / G)\)-expansion method and its application to travelling wave solutions of the Zakharov equations, Appl. Math. - A J. Chin. Univ., 25, 454-462 (2010) · Zbl 1240.35463
[41] Zayed, E. M.E.; Abdelaziz, M. A.M., The two variables \((G^\prime / G, 1 / G)\)-expansion method for solving the nonlinear KdV-mKdV equation, Math. Probl. Eng., 2012, 725061 (2012) · Zbl 1264.35086
[42] Zayed, E. M.E.; Hoda Ibrahim, S. A.; Abdelaziz, M. A.M., Traveling wave solutions of the nonlinear \((3 + 1)\)-dimensional Kadomtsev-Petviashvili equation using the two variables \((G^\prime / G, 1 / G)\)-expansion method, J. Appl. Math., 2012, 560531 (2012) · Zbl 1251.65150
[43] Peng, Y., Exact periodic solutions to a new Hamiltonian amplitude equation, J. Phys. Soc. Jpn., 72, 1356-1359 (2003) · Zbl 1054.35004
[44] Taghizadeh, N.; Najad, M., Exact solutions of the new Hamiltonian amplitude equation by the \((G^\prime / G)\)-expansion method, J. Comput. Appl. Math., 4, 390-395 (2012)
[45] Taghizadeh, N.; Mirzazadeh, M., The First Integral method to some complex nonlinear partial differential equations, Int. J. Appl. Math. Comput., 235, 4871-4877 (2011) · Zbl 1219.35257
[46] Kaup, D. J., A higher order water wave equation and method for solving it, Prog. Theor. Phys., 54, 396-408 (1975) · Zbl 1079.37514
[47] Guo, S.; Zhou, Y.; Zhao, C., The improved \((G^\prime / G)\)-expansion method and its applications to theBroer-Kaup equations and approximate long water wave equations, Appl. Math. Comput., 216, 1965-1971 (2010) · Zbl 1311.76013
[48] Wang, M. L.; Zhang, J. L.; Li, X., Application of the \((G^\prime / G)\)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math. Comput., 206, 321-326 (2008) · Zbl 1157.65459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.