×

Frobenius morphisms and derived categories on two dimensional toric Deligne-Mumford stacks. (English) Zbl 1319.14021

Summary: For a toric Deligne-Mumford (DM) stack \(\mathcal X\), we can consider a certain generalization of the Frobenius endomorphism. For such an endomorphism \(F:\mathcal X\to \mathcal X\) on a 2-dimensional toric DM stack \(\mathcal X\), we show that the push-forward \(F_\ast \mathcal O_{\mathcal X}\) of the structure sheaf generates the bounded derived category of coherent sheaves on \(\mathcal X\).
We also choose a full strong exceptional collection from the set of direct summands of \(F_ \ast \mathcal O_ {\mathcal X}\) in several examples of two dimensional toric DM orbifolds \(\mathcal X\).

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14A20 Generalizations (algebraic spaces, stacks)
18E30 Derived categories, triangulated categories (MSC2010)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[2] Borisov, L.; Chen, L.; Smith, G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc., 18, 1, 193-215 (2005) · Zbl 1178.14057
[3] Bondal, A. I., Derived categories of toric varieties, Oberwolfach Rep., 3, 1, 284-286 (2006)
[4] Borisov, L.; Horja, R., On the \(K\)-theory of smooth toric DM stacks, Snowbird lectures on string geometry, (Contemp. Math., Vol. 401 (2006), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 21-42 · Zbl 1171.14301
[5] Borisov, L.; Horja, R., Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math., 207, 2, 876-927 (2006) · Zbl 1137.14314
[6] Borisov, L.; Hua, Z., On the conjecture of King for smooth toric Deligne-Mumford stacks, Adv. Math., 221, 1, 277-301 (2009) · Zbl 1210.14006
[7] Cox, D. A., The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., 4, 17-50 (1995) · Zbl 0846.14032
[8] Fantechi, B.; Mann, E.; Nironi, F., Smooth toric Deligne-Mumford stacks, J. Reine Angew. Math., 648, 201-244 (2010) · Zbl 1211.14009
[9] Fulton, W., Introduction to toric varieties, (Annals of Mathematics Studies, Vol. 131 (1993), Princeton University Press: Princeton University Press Princeton, NJ), p. xii+157 · Zbl 0813.14039
[10] Huybrechts, D.; Macri, E.; Stellari, P., Formal deformations and their categorical general fibre, Comment. Math. Helv., 86, 1, 41-71 (2011) · Zbl 1215.18015
[11] Iwanari, I., Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Publ. Res. Inst. Math. Sci., 45, 4, 1095-1140 (2009) · Zbl 1203.14058
[12] Iwanari, I., The category of toric stacks, Compos. Math., 145, 3, 718-746 (2009) · Zbl 1177.14024
[14] Kawamata, Y., Derived categories of toric varieties, Michigan Math. J., 54, 3, 517-535 (2006) · Zbl 1159.14026
[15] Oda, T., Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, (Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15 (1988), Springer-Verlag: Springer-Verlag Berlin), p. viii+212 · Zbl 0628.52002
[16] Orlov, D., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat., 56, 4, 852-862 (1992), (in Russian). Translation in Russian Acad. Sci. Izv. Math. 41 (1) (1993) 133-141 · Zbl 0798.14007
[17] Perroni, F., A note on toric Deligne-Mumford stacks, Tohoku Math. J. (2), 60, 3, 441-458 (2008) · Zbl 1174.14044
[18] Thomsen, F., Frobenius direct images of line bundles on toric varieties, J. Algebra., 226, 865-874 (2000) · Zbl 0957.14036
[19] Toda, Y.; Uehara, H., Tilting generators via ample line bundles, Adv. Math., 233, 1-29 (2010) · Zbl 1187.18009
[21] Vistoli, A., Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., 97, 3, 613-670 (1989) · Zbl 0694.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.