×

Stanley depth and simplicial spanning trees. (English) Zbl 1319.05157

Summary: We show that for proving the Stanley conjecture, it is sufficient to consider a very special class of monomial ideals. These ideals (or rather their lcm lattices) are in bijection with the simplicial spanning trees of skeletons of a simplex. We apply this result to verify the Stanley conjecture for quotients of monomial ideals with up to six generators. For seven generators, we obtain a partial result.

MSC:

05E40 Combinatorial aspects of commutative algebra
05C05 Trees
13D02 Syzygies, resolutions, complexes and commutative rings
55U10 Simplicial sets and complexes in algebraic topology

Software:

SCIP; Hdepth

References:

[1] Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1-41 (2009) · Zbl 1171.90476 · doi:10.1007/s12532-008-0001-1
[2] Björner, A.; Graham, R. (ed.); Grötschel, M. (ed.); Lovász, L. (ed.), Topological methods, No. 2, 1819-1872 (1995), North Holland · Zbl 0851.52016
[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings, Rev. Ed. Cambridge University Press, Cambridge (1998) · Zbl 0909.13005
[4] Bruns, W., Krattenthaler, C., Uliczka, J.: Stanley decompositions and Hilbert depth in the Koszul complex. J. Commut. Algebra 2(3), 327-357 (2010) · Zbl 1237.13026 · doi:10.1216/JCA-2010-2-3-327
[5] Duval, A., Klivans, C., Martin, J.: Simplicial matrix-tree theorems. Trans. Am. Math. Soc. 361(11), 6073-6114 (2009) · Zbl 1207.05227 · doi:10.1090/S0002-9947-09-04898-3
[6] Gasharov, V., Peeva, I., Welker, V.: The LCM-lattice in monomial resolutions. Math. Res. Lett. 6, 521-532 (1999) · Zbl 0970.13004 · doi:10.4310/MRL.1999.v6.n5.a5
[7] Herzog, J.: A survey on Stanley depth. In: Bigatti, A.M., Gimenez, P., Sáenz-de-Cabezón, E. (eds.) Monomial Ideals, Computations and Applications, pp. 3-45. Springer, Berlin, Heidelberg (2013) · Zbl 1310.13001
[8] Herzog, J., Jahan, A.S., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes. J. Algebr. Comb. 27(1), 113-125 (2008) · Zbl 1131.13020 · doi:10.1007/s10801-007-0076-1
[9] Herzog, J., Hibi, T.: Monomial Ideals. Springer, Berlin (2011) · Zbl 1206.13001 · doi:10.1007/978-0-85729-106-6
[10] Herzog, J., Jahan, A.S., Zheng, X.: Skeletons of monomial ideals. Math. Nachr. 283(10), 1403-1408 (2010) · Zbl 1211.13010 · doi:10.1002/mana.200810039
[11] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322(9), 3151-3169 (2009) · Zbl 1186.13019 · doi:10.1016/j.jalgebra.2008.01.006
[12] Ichim, B., Moyano Fernández, J.J.: How to compute the multigraded Hilbert depth of a module. Math. Nachr. 287(11-12), 1274-1287 (2014) · Zbl 1302.05212 · doi:10.1002/mana.201300120
[13] Ichim, B., Katthän, L., Moyano Fernández, J.J. : Lcm-lattices and Stanley depth: a first computational approach. Exp. Math. (to appear) (2014). arXiv: 1408.4255 · Zbl 1341.05254
[14] Ichim, B., Katthän, L., Moyano Fernández, J.J.: Stanley depth and the lcm-lattice. In: ArXiv e-prints. arXiv: 1405.3602 (2014) · Zbl 1378.13010
[15] Ichim, B., Katthän, L., Moyano Fernández, J.J.: The behavior of Stanley depth under polarization. In: ArXiv e-prints. arXiv: 1401.4309 (2014) · Zbl 1330.13038
[16] Ichim, B., Zarojanu, A.: An algorithm for computing the multigraded Hilbert depth of a module. Exp. Math. 23(3), 322-331 (2014) · Zbl 1312.13024 · doi:10.1080/10586458.2014.908753
[17] Kalai, G.: Enumeration of Q-acyclic simplicial complexes. Isr. J. Math. 45(4), 337-351 (1983) · Zbl 0535.57011 · doi:10.1007/BF02804017
[18] Katthän, L., Seyed Fakhari, S.A.: Two lower bounds for the Stanley depth of monomial ideals. Math. Nachr. (to appear) (2014). arXiv: 1405.5450 · Zbl 1373.13009
[19] Mapes, S.: Finite atomic lattices and resolutions of monomial ideals. J. Algebra 379, 259-276 (2013) · Zbl 1360.13034 · doi:10.1016/j.jalgebra.2013.01.005
[20] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227. Springer, Berlin (2005) · Zbl 1090.13001
[21] Miller, E.: The Alexander duality functors and local duality with monomial support. J. Algebra 231(1), 180-234 (2000) · Zbl 0968.13009 · doi:10.1006/jabr.2000.8359
[22] Peeva, I., Velasco, M.: Frames and degenerations of monomial resolutions. Trans. Am. Math. Soc. 363(4), 2029-2046 (2011) · Zbl 1221.13024 · doi:10.1090/S0002-9947-2010-04980-3
[23] Popescu, A.; Popescu, D.; Ibadula, D. (ed.); Veys, W. (ed.), Four Generated, Squarefree, Monomial Ideals, 231-248 (2014), Berlin · Zbl 1327.13076
[24] Popescu, D.: Stanley depth on five generated, squarefree, monomial ideals. In: ArXiv e-prints. arXiv: 1312.0923 (2013)
[25] Popescu, D.: Depth of factors of square free monomial ideals. Proc. Am. Math. Soc. 142(6), 1965-1972 (2014) · Zbl 1300.13011 · doi:10.1090/S0002-9939-2014-11939-3
[26] Pournaki, M., et al.: Stanley depth? In: Notices of the AMS 56.9 (2009) · Zbl 0516.10009
[27] Stanley, R.: Linear Diophantine equations and local cohomology. Invent. Math. 68, 175-193 (1982) · Zbl 0516.10009 · doi:10.1007/BF01394054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.