×

Two maxentropic approaches to determine the probability density of compound risk losses. (English) Zbl 1318.91113

Summary: Here we present an application of two maxentropic procedures to determine the probability density distribution of a compound random variable describing aggregate risk, using only a finite number of empirically determined fractional moments. The two methods that we use are the Standard method of Maximum Entropy (SME) and the method of Maximum Entropy in the Mean (MEM). We analyze the performance and robustness of these two procedures in several numerical examples, in which the frequency of losses is Poisson and the individual losses are lognormal random variables. We shall verify that the reconstructions obtained pass a variety of statistical quality criteria, and provide good estimations of VaR and TVaR, which are important measures for risk management purposes. As side product of the work, we obtain a rather accurate numerical description of the density of such compound random variable.{ }These approaches are also used to develop a procedure to determine the distribution of the individual losses from the knowledge of the total loss. Thus, if the only information available is the total loss, and the nature of the frequency of losses is known, the method of maximum entropy provides an efficient method to determine the individual losses as well.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics

Software:

AnDarl

References:

[1] Barzilai, J.; Borwein, J. M., Two-point step size gradient methods, IMA J. Numer. Anal., 8, 141-148 (1988) · Zbl 0638.65055
[2] Berkowitz, J., Testing density forecasts, with applications to risk management, J. Bus. Econom. Statist., 19, 465-474 (2001)
[3] Berliner, B., Some thoughts on uncertainty, the transfer of knowledge and insurability, Geneva Pap. Risk Insur., 9, 380-395 (1984)
[4] Borwein, J. M.; Lewis, A. S., (Convex Analysis and Nonlinear Optimization. Convex Analysis and Nonlinear Optimization, CMS Books (2000), Springer Verlag: Springer Verlag New York) · Zbl 0953.90001
[5] Brocket, P. L., Information theoretic approach to actuarial science: a unification ad extension of relevant theory and applications, Trans. Soc. Actuar., 43, 73-135 (1991)
[6] Christoffersen, P. F., Elements of Financial Risk Management (2012), Springer-Verlag: Springer-Verlag Berlin · Zbl 1250.91002
[7] Crow, E. L.; Shimizu, K., Lognormal Distributions: Theory and Applications (1988), Marcel Dekker: Marcel Dekker New York · Zbl 0644.62014
[8] Cruz, M. G., Modeling, Measuring and Hedging Operational Risk (2002), John Wiley & Sons: John Wiley & Sons New York
[9] Diebold, F. X.; Gunther, T. A.; Tay, A. S., Evaluating density forecasts with applications to financial risk management, Internat. Econom. Rev., 39, 863-883 (1998)
[10] Esscher, F., On the probability function in the collective theory of risk, Skand. Aktuarietidskr., 15, 175-195 (1932) · JFM 58.1177.05
[11] Gel, Y. R.; Gastwirth, J. L., A robust modification of the Jarque-Bera test of normality, Econom. Lett., 99, 1, 30-32 (2008) · Zbl 1255.62132
[12] Gneiting, T.; Balabdaoui, F.; Raftery, A. E., Probabilistic forecasts, calibration and sharpness, J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 243-268 (2007) · Zbl 1120.62074
[13] Gzyl, H.; Novi-Inverardi, P. L.; Tagliani, A., A comparison of numerical approaches to determine the severity of losses, J. Oper. Risk, 8, 3-15 (2013)
[14] Gzyl, H.; Velásquez, Y., Linear Inverse Problems: The Maximum Entropy Connection (2011), World Scientific Pubs: World Scientific Pubs Singapore · Zbl 1255.65110
[15] Haberman, S.; Kallaf-Allah, M.; Verrall, R., Entropy, longevity and the cost of annuities, Insurance Math. Econom., 48, 197-204 (2011) · Zbl 1233.91147
[16] Härdle, W.; Kleinow, T.; Stahl, G., Applied Quantitative Finance (2002), Springer-Verlag: Springer-Verlag Berlin · Zbl 1058.91037
[17] Hyndman, R. J.; Koehler, A. B., Another look at measures of forecast accuracy, Int. J. Forecast., 22, 4, 679-688 (2006)
[18] Jaynes, E. T., Information theory and statistical physics, Phys. Rev., 620-630 (1957) · Zbl 0084.43701
[19] Kapur, J. N., Maximum-Entropy Models in Science and Engineering (1989), John Wiley & Sons · Zbl 0746.00014
[20] Leipnik, R. B., On lognormal random variables: I the characteristic function, J. Aust. Math. Soc. B, 32, 327-347 (1991) · Zbl 0733.60033
[21] Li, J. S-h., Pricing longevity risk with the parametric bootstrap: A maximum entropy approach, Insurance Math. Econom., 47, 176-186 (2010) · Zbl 1231.91441
[22] Marsaglia, G.; Marsaglia, J., Evaluating the Anderson-Darling distribution, J. Stat. Softw., 9, 1-5 (2004)
[23] Martin-Löf, A., Entropy, a useful concept in risk theory, Scand. Actuar. J., 69, 223-235 (1986) · Zbl 0649.62098
[24] Panjer, H., Operational Risk: Modeling and Analytics (2006), John Wiley and Sons: John Wiley and Sons New York, USA · Zbl 1258.62101
[25] Rockafellar, R. T.; Uryasev, S., Optimization of conditional value at risk, J. Risk, 2, 21-41 (2000)
[26] Rosenblatt, M., Remarks on a multivariate transformation, Ann. Math. Statist., 23, 470-472 (1952) · Zbl 0047.13104
[27] Ruppert, D., Statistics and Data Analysis for Financial Engineering (2010), Springer-Verlag: Springer-Verlag Berlin
[28] Stephens, M. A., EDF statistics for goodness of fit and some comparisons, J. Amer. Statist. Assoc., 69, 730-737 (1974)
[29] Tay, A. S.; Wallis, K. F., Density forecasting: A survey, J. Forecast., 19, 235-254 (2000)
[30] Thas, O., Comparing Distributions (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1234.62014
[31] Zhou, R.; Cai, R.; Tong, G., Applications of entropy in finance: A review, Entropy, 15, 4909-4931 (2013) · Zbl 1422.91673
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.