×

The complex symplectic geometry of the deformation space of complex projective structures. (English) Zbl 1318.53097

Summary: This article investigates the complex symplectic geometry of the deformation space of complex projective structures on a closed oriented surface of genus at least 2. The cotangent symplectic structure given by the Schwarzian parametrization is studied carefully and compared to the Goldman symplectic structure on the character variety, clarifying and generalizing a theorem of S. Kawai. Generalizations of results of C. McMullen are derived, notably quasifuchsian reciprocity. The symplectic geometry is also described in a Hamiltonian setting with the complex Fenchel-Nielsen coordinates on quasifuchsian space, recovering results of I. Platis.

MSC:

53D30 Symplectic structures of moduli spaces

References:

[1] L V Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math. 74 (1961) 171 · Zbl 0146.30602 · doi:10.2307/1970309
[2] L V Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964) 413 · Zbl 0133.04201 · doi:10.2307/2373173
[3] L Ahlfors, L Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. 72 (1960) 385 · Zbl 0104.29902 · doi:10.2307/1970141
[4] C G Anderson, Projective structures on Riemann surfaces and developing maps to H(3) and CP(n), PhD thesis, UC Berkeley (1998)
[5] M F Atiyah, R Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[6] L Bers, On Sullivan’s proof of the finiteness theorem and the eventual periodicity theorem, Amer. J. Math. 109 (1987) 833 · Zbl 0632.30025 · doi:10.2307/2374490
[7] R D Canary, D McCullough, Homotopy equivalences of \(3\)-manifolds and deformation theory of Kleinian groups, Mem. Amer. Math. Soc. 812, AMS (2004) · Zbl 1062.57027 · doi:10.1090/memo/0812
[8] J J Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980) 687 · Zbl 0439.58014 · doi:10.1002/cpa.3160330602
[9] D Dumas, Complex projective structuresuller theory, Vol. II”, IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc. (2009) 455 · Zbl 1196.30039 · doi:10.4171/055-1/13
[10] C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19 · Zbl 0185.32901
[11] D B A Epstein, A Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 113 · Zbl 0612.57010
[12] W Fenchel, Elementary geometry in hyperbolic space, Studies in Mathematics 11, de Gruyter (1989) · Zbl 0674.51001 · doi:10.1515/9783110849455
[13] D Gallo, M Kapovich, A Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. 151 (2000) 625 · Zbl 0977.30028 · doi:10.2307/121044
[14] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[15] W M Goldman, The complex-symplectic geometry of \(\mathrm{SL}(2,\mathbb C)\)-characters over surfaces, Tata Inst. Fund. Res. (2004) 375 · Zbl 1089.53060
[16] D A Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975) 1 · Zbl 0333.34002 · doi:10.1007/BF02392015
[17] M Heusener, J Porti, The variety of characters in \(\mathrm{PSL}_2(\mathbb C)\), Bol. Soc. Mat. Mexicana 10 (2004) 221 · Zbl 1100.57014
[18] J H Hubbard, The monodromy of projective structures, Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 257 · Zbl 0475.32008
[19] S Kawai, The symplectic nature of the space of projective connections on Riemann surfaces, Math. Ann. 305 (1996) 161 · Zbl 0848.30026 · doi:10.1007/BF01444216
[20] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235 · Zbl 0528.57008 · doi:10.2307/2007076
[21] K Kodaira, D C Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. 67 (1958) 328 · Zbl 1307.14016 · doi:10.2307/1969867
[22] C Kourouniotis, Bending in the space of quasi-Fuchsian structures, Glasgow Math. J. 33 (1991) 41 · Zbl 0718.57010 · doi:10.1017/S0017089500008016
[23] C Kourouniotis, The geometry of bending quasi-Fuchsian groups, London Math. Soc. Lecture Note Ser. 173, Cambridge Univ. Press (1992) 148 · Zbl 0771.53026 · doi:10.1017/CBO9780511565793.016
[24] C Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika 41 (1994) 173 · Zbl 0801.30036 · doi:10.1112/S0025579300007270
[25] I Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972) 53 · Zbl 0239.30020 · doi:10.1007/BF02566788
[26] B Loustau, Minimal surfaces and symplectic structures of moduli spaces, · Zbl 1323.53091 · doi:10.1007/s10711-014-0042-8
[27] B Loustau, The symplectic geometry of the deformation space of complex projective structures over a surface, PhD thesis, University of Toulouse III (2011)
[28] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. 99 (1974) 383 · Zbl 0282.30014 · doi:10.2307/1971059
[29] B Maskit, Self-maps on Kleinian groups, Amer. J. Math. 93 (1971) 840 · Zbl 0227.32007 · doi:10.2307/2373474
[30] C T McMullen, Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283 · Zbl 0890.30031 · doi:10.1090/S0894-0347-98-00259-8
[31] C T McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. 151 (2000) 327 · Zbl 0988.32012 · doi:10.2307/121120
[32] I D Platis, Complex symplectic geometry of quasi-Fuchsian space, Geom. Dedicata 87 (2001) 17 · Zbl 0997.30033 · doi:10.1023/A:1012017528487
[33] C Series, An extension of Wolpert’s derivative formula, Pacific J. Math. 197 (2001) 223 · Zbl 1065.30044 · doi:10.2140/pjm.2001.197.223
[34] D Sullivan, Quasiconformal homeomorphisms and dynamics, II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243 · Zbl 0606.30044 · doi:10.1007/BF02392543
[35] L A Takhtajan, L P Teo, Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003) 183 · Zbl 1065.30046 · doi:10.1007/s00220-003-0878-5
[36] S P Tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math. 5 (1994) 239 · Zbl 0816.32017 · doi:10.1142/S0129167X94000140
[37] C H Taubes, Minimal surfaces in germs of hyperbolic \(3\)-manifolds, Geom. Topol. Monogr. 7 (2004) 69 · Zbl 1087.53011 · doi:10.2140/gtm.2004.7.69
[38] W P Thurston, Three-dimensional geometry and topology, Vol. 1 (editor S Levy), Princeton Math. Series 35, Princeton Univ. Press (1997) · Zbl 0873.57001
[39] S Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. 115 (1982) 501 · Zbl 0496.30039 · doi:10.2307/2007011
[40] S Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. 117 (1983) 207 · Zbl 0518.30040 · doi:10.2307/2007075
[41] S Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985) 969 · Zbl 0578.32039 · doi:10.2307/2374363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.