×

Fractional Hermite-Hadamard inequalities for convex functions and applications. (English) Zbl 1318.26014

Summary: In this paper, we derive a new lemma including third-order derivative of a function via fractional integrals. Using this lemma, we establish some new fractional estimates for Hermite-Hadamard type inequalities for convex functions. Several special cases are also discussed. Some applications to special means of real numbers are also discussed. The ideas and techniques used in this paper may stimulate future investigations regarding Hermite-Hadamard type of inequalities and its application in different areas.

MSC:

26A33 Fractional derivatives and integrals
26D15 Inequalities for sums, series and integrals
26A51 Convexity of real functions in one variable, generalizations
Full Text: DOI

References:

[1] G. Cristescu, Improved integral inequalities for products of convex functions, J. Ineq. Pure Appl. Math. 6(2), (2005).; · Zbl 1085.26011
[2] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and appli- cations, Victoria University, Australia (2000).;
[3] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math, 21, 335-341, (1995).; · Zbl 0834.26009
[4] S.-H. Wang, B.-Y. Xi, F. Qi, Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex, Analysis 32, 247-262 (2012)/DOI 10.1524/anly.2012.1167.; · Zbl 1259.26033
[5] W.-D. Jiang, D.-W. Niu, Y. Hua, F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis 32, 209-220 (2012)/DOI 10.1524/anly.2012.1161.; · Zbl 1259.26020
[6] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, (2006).; · Zbl 1092.45003
[7] S. K. Khattri, Three proofs of the inequality e <(1 +1/n)\(^{n+0:5}\), Amer. Math. Monthly, 117(3) (2010), 273-277.; · Zbl 1204.26036
[8] M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Trans. J. Math. Mech. 5(2), (2013), 129-136.;
[9] M. A. Noor, M. U. Awan, K. I. Noor, On some inequalities for relative semi-convex functions, J. Ineq. Appl. 2013, 2013:332.; · Zbl 1290.26034
[10] M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Inform. Sci, 8(2), (2014), 607-616.;
[11] M. A. Noor, K. I. Noor, M. U. Awan, Hermite-Hadamard inequalities for relative semi-convex functions and applications, Filomat, 28(2)(2014), 221-230.; · Zbl 1458.26061
[12] M. A. Noor, G. Cristescu, M. U. Awan, Generalized fractional Hermite-Hadamard inequalities for twice differentiable s-convex functions, Filomat, 29(4), (2015), 807-815.; · Zbl 1391.26059
[13] M. E. Ozdemir, H. Kavurmaci, C Yildiz, Fractional integral inequalities via s-convex functions, available online at: arXiv:1201.4915v1, (2012).;
[14] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, HermiteHadamards inequalities for fractional integrals and related fractional inequalities, Math. Comp. Modelling 57, 2403-2407, 2013.; · Zbl 1286.26018
[15] Y. Shuang, H.-P. Yin, F. Qi, HermiteHadamard type integral inequalities for geometric- arithmetically s-convex functions, Analysis 33, 197208 (2013)/DOI 10.1524/anly.2013.1192.; · Zbl 1272.26024
[16] J. Wang, X. Li, M. Feckan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal. 2012, http://dxdoi.org/10.1080/00036811.2012.727986.; · Zbl 1285.26013
[17] B.-Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Func. Spaces Appl., 2012(2012), Article ID 980438..; · Zbl 1247.26041
[18] B.-Y Xi, S.-H Wang, F. Qi, Some inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are P-convex, Appl. Math., 3, 1898-1902, (2012).;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.