×

How hidden are hidden processes? A primer on crypticity and entropy convergence. (English) Zbl 1317.94040

Summary: We investigate a stationary process’s crypticity – a measure of the difference between its hidden state information and its observed information – using the causal states of computational mechanics. Here, we motivate crypticity and cryptic order as physically meaningful quantities that monitor how hidden a hidden process is. This is done by recasting previous results on the convergence of block entropy and block-state entropy in a geometric setting, one that is more intuitive and that leads to a number of new results. For example, we connect crypticity to how an observer synchronizes to a process. We show that the block-causal-state entropy is a convex function of block length. We give a complete analysis of spin chains. We present a classification scheme that surveys stationary processes in terms of their possible cryptic and Markov orders. We illustrate related entropy convergence behaviors using a new form of foliated information diagram. Finally, along the way, we provide a variety of interpretations of crypticity and cryptic order to establish their naturalness and pervasiveness. This is also a first step in developing applications in spatially extended and network dynamical systems.{
©2011 American Institute of Physics}

MSC:

94A17 Measures of information, entropy
05C83 Graph minors

References:

[1] DOI: 10.1063/1.3492712 · doi:10.1063/1.3492712
[2] Moore G. E., Electronics 38 (8) pp 56– (1965)
[3] Moore G. E., Tech. Dig. – Int. Electron Devices Meet. 1975 pp 11–
[4] Moore G. E., Proc. SPIE 2437 pp 1– (1995)
[5] DOI: 10.1007/978-1-4899-2305-9 · doi:10.1007/978-1-4899-2305-9
[6] DOI: 10.1063/1.1530990 · Zbl 1080.94006 · doi:10.1063/1.1530990
[7] DOI: 10.1103/PhysRevLett.63.105 · doi:10.1103/PhysRevLett.63.105
[8] DOI: 10.1103/PhysRevLett.103.094101 · doi:10.1103/PhysRevLett.103.094101
[9] DOI: 10.1088/1751-8113/42/36/362002 · Zbl 1177.94162 · doi:10.1088/1751-8113/42/36/362002
[10] DOI: 10.1063/1.3637494 · Zbl 1317.62071 · doi:10.1063/1.3637494
[11] DOI: 10.1007/s10955-009-9808-z · Zbl 1177.82054 · doi:10.1007/s10955-009-9808-z
[12] DOI: 10.1063/1.3489888 · Zbl 1311.94035 · doi:10.1063/1.3489888
[13] DOI: 10.1142/S021952590100019X · Zbl 1036.94004 · doi:10.1142/S021952590100019X
[14] DOI: 10.1103/PhysRevE.55.R1239 · doi:10.1103/PhysRevE.55.R1239
[15] DOI: 10.1023/A:1010388907793 · Zbl 1100.82500 · doi:10.1023/A:1010388907793
[16] DOI: 10.1103/PhysRevE.59.275 · doi:10.1103/PhysRevE.59.275
[17] DOI: 10.1109/18.79902 · Zbl 0741.94009 · doi:10.1109/18.79902
[18] DOI: 10.1063/1.3637490 · Zbl 1317.60088 · doi:10.1063/1.3637490
[19] DOI: 10.1007/BF01044731 · doi:10.1007/BF01044731
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.