×

Superintegrable deformations of superintegrable systems: quadratic superintegrability and higher-order superintegrability. (English) Zbl 1317.70011

Summary: The superintegrability of four Hamiltonians \(\widetilde{H}_r =\lambda H_r,\; r = a, b, c, d\), where \(H_{r}\) are known Hamiltonians and \(\lambda\) is a certain function defined on the configuration space and depending on a parameter \(\kappa\), is studied. The new Hamiltonians, and the associated constants of motion \(J_{ri}\;, i = 1, 2, 3\), are continuous functions of the parameter \(\kappa\). The first part is concerned with separability and quadratic superintegrability (the integrals of motion are quadratic in the momenta) and the second part is devoted to the existence of higher-order superintegrability. The results obtained in the second part are related with the Tremblay-Turbiner-Winternitz and the Post-Winternitz systems.{
©2015 American Institute of Physics}

MSC:

70H05 Hamilton’s equations
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
37N05 Dynamical systems in classical and celestial mechanics

References:

[1] Fris, T. I.; Mandrosov, V.; Smorodinsky, Y. A.; Uhlir, M.; Winternitz, P., On higher symmetries in quantum mechanics, Phys. Lett., 16, 354-356 (1965) · doi:10.1016/0031-9163(65)90885-1
[2] Evans, N. W., Superintegrability in classical mechanics, Phys. Rev. A, 41, 10, 5666-5676 (1990) · doi:10.1103/PhysRevA.41.5666
[3] Grosche, C.; Pogosyan, G. S.; Sissakian, A. N., Path integral discussion for Smorodinsky-Winternitz potentials. I. Two- and three- dimensional Euclidean spaces, Fortschr. Phys., 43, 6, 453-521 (1995) · Zbl 1064.81523 · doi:10.1002/prop.2190430602
[4] Kalnins, E. G.; Williams, G. C.; Miller, W.; Pogosyan, G. S., Superintegrability in the three-dimensional Euclidean space, J. Math. Phys., 40, 2, 708-725 (1999) · Zbl 1059.81525 · doi:10.1063/1.532699
[5] Rañada, M. F., Superintegrable n = 2 systems, quadratic constants and potentials of Drach, J. Math. Phys., 38, 8, 4165-4178 (1997) · Zbl 0883.58014 · doi:10.1063/1.532089
[6] Tsiganov, A. V., The Drach superintegrable systems, J. Phys. A: Math. Gen., 33, 41, 7407-7422 (2000) · Zbl 0972.37043 · doi:10.1088/0305-4470/33/41/310
[7] Rañada, M. F.; Santander, M., Complex euclidean super-integrable potentials, potentials of Drach, and potential of Holt, Phys. Lett. A, 278, 271-279 (2001) · Zbl 0972.37039 · doi:10.1016/S0375-9601(00)00782-9
[8] Campoamor-Stursberg, R., Superposition of super-integrable pseudo-Euclidean potentials in N = 2 with a fundamental constant of motion of arbitrary order in the momenta, J. Math. Phys., 55, 042904 (2014) · Zbl 1348.70046 · doi:10.1063/1.4871546
[9] Grosche, C.; Pogosyan, G. S.; Sissakian, A. N., Path integral discussion for Smorodinsky-Winternitz potentials. II. Two- and three- dimensional sphere, Fortschr. Phys., 43, 6, 523-563 (1995) · Zbl 1064.81522 · doi:10.1002/prop.2190430603
[10] Rañada, M. F.; Santander, M., Superintegrable systems on the two-dimensional sphere \(S^2\) and the hyperbolic plane \(H^2\), J. Math. Phys., 40, 10, 5026-5057 (1999) · Zbl 1063.37538 · doi:10.1063/1.533014
[11] Kalnins, E. G.; Kress, J. M.; Pogosyan, G. S.; Miller, W., Completeness of superintegrability in two-dimensional constant-curvature spaces, J. Phys. A: Math. Gen., 34, 22, 4705-4720 (2001) · Zbl 0993.70014 · doi:10.1088/0305-4470/34/22/311
[12] Kalnins, E. G.; Kress, J. M.; Winternitz, P., Superintegrability in a two-dimensional space of nonconstant curvature, J. Math. Phys., 43, 2, 970-983 (2002) · Zbl 1059.37040 · doi:10.1063/1.1429322
[13] Ballesteros, A.; Herranz, F. J.; Santander, M.; Sanz-Gil, T., Maximal superintegrability on N-dimensional curved spaces, J. Phys. A: Math. Gen., 36, 7, L93-L99 (2003) · Zbl 1039.37036 · doi:10.1088/0305-4470/36/7/101
[14] Ballesteros, A.; Herranz, F. J.; Musso, F., The anisotropic oscillator on the 2D sphere and the hyperbolic plane, Nonlinearity, 26, 4, 971-990 (2013) · Zbl 1268.37077 · doi:10.1088/0951-7715/26/4/971
[15] Gonera, C.; Kaszubska, M., Superintegrable systems on spaces of constant curvature, Ann. Phys., 364, 91-102 (2014) · Zbl 1342.37063 · doi:10.1016/j.aop.2014.04.005
[16] Miller, W.; Post, S.; Winternitz, P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor., 46, 423001 (2013) · Zbl 1276.81070 · doi:10.1088/1751-8113/46/42/423001
[17] Wojciechowski, S., Superintegrability of the Caloger-Moser system, Phys. Lett. A, 95, 279-281 (1983) · doi:10.1016/0375-9601(83)90018-X
[18] Gonera, C., On the superintegrability of Calogero-Moser-Sutherland model, J. Phys. A: Math. Gen., 31, 19, 4465-4472 (1998) · Zbl 0938.37046 · doi:10.1088/0305-4470/31/19/012
[19] Rañada, M. F., Superintegrability of the Calogero-Moser system: Constants of motion, master symmetries, and time-dependent symmetries, J. Math. Phys., 40, 1, 236-247 (1999) · Zbl 0956.37041 · doi:10.1063/1.532770
[20] Evans, N. W.; Verrier, P. E., Superintegrability of the caged anisotropic oscillator, J. Math. Phys., 49, 092902 (2008) · Zbl 1152.81424 · doi:10.1063/1.2988133
[21] Rodríguez, M. A.; Tempesta, P.; Winternitz, P., Reduction of superintegrable systems: The anisotropic harmonic oscillator, Phys. Rev. E, 78, 046608 (2008) · doi:10.1103/PhysRevE.78.046608
[22] Rañada, M. F.; Rodríguez, M. A.; Santander, M., A new proof of the higher-order superintegrability of a noncentral oscillator with inversely quadratic nonlinearities, J. Math. Phys., 51, 042901 (2010) · Zbl 1310.70025 · doi:10.1063/1.3374665
[23] Tremblay, F.; Turbiner, A. V.; Winternitz, P., An infinite family of solvable and integrable quantum systems on a plane, J. Phys. A: Math. Theor., 42, 242001 (2009) · Zbl 1166.81366 · doi:10.1088/1751-8113/42/24/242001
[24] Tremblay, F.; Turbiner, A. V.; Winternitz, P., Periodic orbits for an infinite family of classical superintegrable systems, J. Phys. A: Math. Theor., 43, 015202 (2010) · Zbl 1186.37069 · doi:10.1088/1751-8113/43/1/015202
[25] Quesne, C., Superintegrability of the Tremblay-Turbiner-Winternitz quantum Hamiltonians on a plane for odd k, J. Phys. A: Math. Theor., 43, 082001 (2010) · Zbl 1185.81090 · doi:10.1088/1751-8113/43/8/082001
[26] Quesne, C., N=2 supersymmetric extension of the Tremblay-Turbiner-Winternitz Hamiltonians on a plane, J. Phys. A: Math. Theor., 43, 305202 (2010) · Zbl 1194.81113 · doi:10.1088/1751-8113/43/30/305202
[27] Kalnins, E. G.; Kress, J. M.; Miller, W., Superintegrability and higher order constants for quantum systems, J. Phys. A: Math. Theor., 43, 265205 (2010) · Zbl 1192.81129 · doi:10.1088/1751-8113/43/26/265205
[28] Maciejewski, A. J.; Przybylska, M.; Yoshida, H., Necessary conditions for super-integrability of a certain family of potentials in constant curvature spaces, J. Phys. A: Math. Theor., 43, 382001 (2010) · Zbl 1202.37086 · doi:10.1088/1751-8113/43/38/382001
[29] Calzada, J. A.; Celeghini, E.; del Olmo, M. A.; Velasco, M. A., Algebraic aspects of TTW Hamiltonian system, J. Phys.: Conf. Ser., 343, 012029 (2012) · doi:10.1088/1742-6596/343/1/012029
[30] Rañada, M. F., A new approach to the higher-order superintegrability of the Tremblay-Turbiner-Winternitz system, J. Phys. A: Math. Theor., 45, 465203 (2012) · Zbl 1348.70048 · doi:10.1088/1751-8113/45/46/465203
[31] Levesque, D.; Post, S.; Winternitz, P., Infinite families of superintegrable systems separable in subgroup coordinates, J. Phys. A: Math. Theor., 45, 465204 (2012) · Zbl 1348.70047 · doi:10.1088/1751-8113/45/46/465204
[32] Gonera, C., On superintegrability of TTW model, Phys. Lett. A, 376, 2341-2343 (2012) · Zbl 1266.37030 · doi:10.1016/j.physleta.2012.06.006
[33] Hakobyan, T.; Lechtenfeld, O.; Nersessian, A.; Saghatelian, A.; Yeghikyan, V., Integrable generalizations of oscillator and Coulomb systems via action-angle variables, Phys. Lett. A, 376, 679-686 (2012) · Zbl 1255.70015 · doi:10.1016/j.physleta.2011.12.034
[34] Post, S.; Tsujimoto, S.; Vinet, L., Families of superintegrable Hamiltonians constructed from exceptional polynomials, J. Phys. A: Math. Theor., 45, 405202 (2012) · Zbl 1255.81145 · doi:10.1088/1751-8113/45/40/405202
[35] Celeghini, E.; Kuru, S.; Negro, J.; del Olmo, M. A., A unified approach to quantum and classical TTW systems based on factorizations, Ann. Phys., 332, 27-37 (2013) · Zbl 1342.81180 · doi:10.1016/j.aop.2013.01.008
[36] Calzada, J. A.; Kuru, S.; Negro, J., Superintegrable Lissajous systems on the sphere, Eur. Phys. J. Plus, 129, 164 (2014) · doi:10.1140/epjp/i2014-14164-5
[37] Rañada, M. F., The Tremblay-Turbiner-Winternitz system on spherical and hyperbolic spaces: Superintegrability, curvature-dependent formalism and complex factorization, J. Phys. A: Math. Theor., 47, 165203 (2014) · Zbl 1382.37059 · doi:10.1088/1751-8113/47/16/165203
[38] Post, S.; Winternitz, P., An infinite family of superintegrable deformations of the Coulomb potential, J. Phys. A: Math. Theor., 43, 222001 (2010) · Zbl 1190.81043 · doi:10.1088/1751-8113/43/22/222001
[39] Rañada, M. F., Higher order superintegrability of separable potentials with a new approach to the Post-Winternitz system, J. Phys. A: Math. Theor., 46, 125206 (2013) · Zbl 1267.37061 · doi:10.1088/1751-8113/46/12/125206
[40] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O., A maximally superintegrable system on an n-dimensional space of nonconstant curvature, Phys. D, 237, 4, 505-509 (2008) · Zbl 1141.37023 · doi:10.1016/j.physd.2007.09.021
[41] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.; Riglioni, D., Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability, Ann. Phys., 326, 8, 2053-2073 (2011) · Zbl 1220.81109 · doi:10.1016/j.aop.2011.03.002
[42] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.; Riglioni, D., On two superintegrable nonlinear oscillators in N dimensions, Int. J. Theor. Phys., 50, 7, 2268-2277 (2011) · Zbl 1358.70023 · doi:10.1007/s10773-011-0750-x
[43] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.; Riglioni, D., Superintegrable oscillator and Kepler systems on spaces of nonconstant curvature via the Stäckel transform, SIGMA, 7, 048 (2011) · Zbl 1218.37075 · doi:10.3842/sigma.2011.048
[44] Mathews, P. M.; Lakshmanan, M., On a unique nonlinear oscillator, Quart. Appl. Math., 32, 215-218 (1974) · Zbl 0284.34046
[45] Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M., Unusual Lienard-type nonlinear oscillator, Phys. Rev. E, 72, 6, 066203 (2005) · doi:10.1103/PhysRevE.72.066203
[46] Bruzon, M. S.; Gandarias, M. L.; Senthilvelan, M., On the nonlocal symmetries of certain nonlinear oscillators and their general solution, Phys. Lett. A, 375, 2985-2987 (2011) · Zbl 1250.34030 · doi:10.1016/j.physleta.2011.06.036
[47] Cariñena, J. C., de Lucas, J., and Rañada, M. F., “Jacobi multipliers, non-local symmetries and nonlinear oscillators” (to be published). · Zbl 1338.70021
[48] Cariñena, J. F.; Rañada, M. F.; Santander, M.; Senthilvelan, M., A non-linear Oscillator with quasi-Harmonic behaviour: Two- and n-dimensional oscillators, Nonlinearity, 17, 5, 1941-1963 (2004) · Zbl 1068.37038 · doi:10.1088/0951-7715/17/5/019
[49] Cariñena, J. F.; Rañada, M. F.; Santander, M., A quantum exactly solvable nonlinear oscillator with quasi-harmonic behaviour, Ann. Phys., 322, 2, 434-459 (2007) · Zbl 1119.81098 · doi:10.1016/j.aop.2006.03.005
[50] Cariñena, J. F.; Rañada, M. F.; Santander, M., The quantum harmonic oscillator on the sphere and the hyperbolic plane, Ann. Phys., 322, 10, 2249-2278 (2007) · Zbl 1132.81016 · doi:10.1016/j.aop.2006.10.010
[51] Cariñena, J. F.; Rañada, M. F.; Santander, M., The harmonic oscillator on three-dimensional spherical and hyperbolic spaces: Curvature dependent formalism and quantization, Int. J. Theor. Phys., 50, 2170-2178 (2011) · Zbl 1226.81103 · doi:10.1007/s10773-011-0688-z
[52] Cariñena, J. F.; Rañada, M. F.; Santander, M., Curvature-dependent formalism, Schrodinger equation and energy levels for the harmonic oscillator three-dimensional spherical and hyperbolic spaces, J. Phys. A: Math. Theor., 45, 265303 (2012) · Zbl 1250.81029 · doi:10.1088/1751-8113/45/26/265303
[53] Cariñena, J. F.; Rañada, M. F.; Santander, M., Central potentials on spaces of constant curvature: The Kepler problem on the two- dimensional sphere \(S^2\) and the hyperbolic plane \(H^2\), J. Math. Phys., 46, 5, 052702 (2005) · Zbl 1110.70013 · doi:10.1063/1.1893214
[54] Cariñena, J. F.; Rañada, M. F.; Santander, M., Superintegrability on curved spaces, orbits and momentum hodographs: Revisiting a classical result by Hamilton, J. Phys. A: Math. Theor., 40, 45, 13645-13666 (2007) · Zbl 1124.37036 · doi:10.1088/1751-8113/40/45/010
[55] Kalnins, E. G.; Miller, W.; Post, S., Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics, J. Phys. A: Math. Theor., 43, 035202 (2010) · Zbl 1214.37038 · doi:10.1088/1751-8113/43/3/035202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.