×

Improved local analysis for a certain class of iterative methods with cubic convergence. (English) Zbl 1317.65127

Summary: We use Lipschitz and center-Lipschitz conditions to provide an improved local convergence analysis for a certain class of iterative methods with cubic order of convergence. It turns out that under the same computational cost as before, we obtain a larger radius of convergence and tighter error bounds. Numerical examples are also provided in this study.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
Full Text: DOI

References:

[1] Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004) · Zbl 1057.65029 · doi:10.1016/j.jmaa.2004.04.008
[2] Argyros, I.K.: Convergence and Applications of Newton-type Iterations. Springer-Verlag, New York (2009)
[3] Babajee, D.K.R., Dauhoo, M.Z.: An analysis of the properties of the variants of Newton’s method with third order convergence. Appl. Math. Comput. 183, 659–684 (2006) · Zbl 1123.65036 · doi:10.1016/j.amc.2006.05.116
[4] Bi, W.H., Wu, Q.B., Ren, H.M.: Convergence ball and error analysis of Ostrowski–Traubs method. Appl. Math. J. Chinese Univ. 25, 374–378 (2010) · Zbl 1240.65167 · doi:10.1007/s11766-010-2447-y
[5] Hasanov, V.I., Ivanov, I.G., Nedzhibov, G.: A new modification of Newton method. Appl. Math. Eng. 27, 278–286 (2002) · Zbl 1333.65052
[6] Huang, Z.D.: The convergence ball of Newton’s method and the uniqueness ball of equations under Hölder-type continuous derivatives. Comput. Math. Appl. 25, 247–251 (2004) · Zbl 1052.65054 · doi:10.1016/S0898-1221(04)90021-1
[7] Guo, X.P.: Convergence ball of iterations with one parameter. Appl. Math. J. Chinese Univ. Ser. B 20, 462–468 (2005) · Zbl 1106.65045 · doi:10.1007/s11766-005-0025-5
[8] Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
[9] Ren, H.M., Wu, Q.B.: The convergence ball of the Secant method under Hölder continuous divided differences. J. Comput. Appl. Math. 194, 284–293 (2006) · Zbl 1101.65057 · doi:10.1016/j.cam.2005.07.008
[10] Ren, H.M., Wu, Q.B.: Convergence ball and error anlysis of a family of iterative methods with cubic convergence. Appl. Math. Comput. 209, 369–378 (2009) · Zbl 1177.65083 · doi:10.1016/j.amc.2008.12.057
[11] Ren, H.M., Argyros, I.K.: On convergence of the modified Newton’s method under Hölder continuous Fréchet derivative. Appl. Math. Comput. 213, 440–448 (2009) · Zbl 1167.65028 · doi:10.1016/j.amc.2009.03.040
[12] Ren, H.M., Argyros, I.K.: Convergence radius of the modified Newton method for multiple zeros under Hölder continuous derivative. Appl. Math. Comput. 217, 612–621 (2010) · Zbl 1205.65174 · doi:10.1016/j.amc.2010.05.098
[13] Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs, NJ (1964) · Zbl 0121.11204
[14] Traub, J.F., Wozniakowski, H.: Convergence and complexity of Newton iteration for operator equation. J. Assoc. Comput. Mech. 26, 250–258 (1979) · Zbl 0403.65019 · doi:10.1145/322123.322130
[15] Wang, X.H.: The convergence ball on Newton’s method. Chin. Sci. Bull., A Special Issue of Mathematics. Phys. Chem. 25, 36–37 (1980) (in Chinese)
[16] Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 13, 87–93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[17] Wu, Q.B., Ren, H.M.: Convergence ball of a modified secant method for finding zero of derivatives. Appl. Math. Comput. 174, 24–33 (2006) · Zbl 1090.65058 · doi:10.1016/j.amc.2005.05.007
[18] Wu, Q.B., Ren, H.M., Bi, W.H.: Convergence ball and error analysis of Müller’s method. Appl. Math. Comput. 184, 464–470 (2007) · Zbl 1117.65070 · doi:10.1016/j.amc.2006.05.167
[19] Wu, Q.B., Ren, H.M., Bi, W.H.: The convergence ball of Wang’s method for finding a zero of a derivative. Math. Comput. Model. 49, 740–744 (2009) · Zbl 1165.65346 · doi:10.1016/j.mcm.2008.04.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.