×

Extremal domains for self-commutators in the Bergman space. (English) Zbl 1317.47028

Summary: In J.-F. Olsen and M. C. Reguera [“On a sharp estimate for Hankel operators and Putnam’s inequality”, Preprint, arXiv:1305.5193], it was shown that Putnam’s inequality for the norm of self-commutators can be improved by a factor of \(\frac{1}{2}\) for Toeplitz operators with analytic symbol \(\varphi \) acting on the Bergman space \(A^{2}(\Omega)\). This improved upper bound is sharp when \(\varphi (\Omega)\) is a disk.
In this paper, we show that disks are the only domains for which the upper bound is attained.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47A63 Linear operator inequalities
47B47 Commutators, derivations, elementary operators, etc.
30H20 Bergman spaces and Fock spaces

References:

[1] Alexander, H.: Projection of polynomial hulls. J. Funct. Anal. 3, 13-19 (1973) · Zbl 0256.32009 · doi:10.1016/0022-1236(73)90063-3
[2] Axler, S., Shapiro, J.H.: Putnam’s theorem, Alexander’s spectral area estimate, and VMO. Math. Ann. 271, 161-183 (1985) · Zbl 0541.30021 · doi:10.1007/BF01455985
[3] Bell, S., Ferguson, T., Lundberg, E.: Self-commutators of Toeplitz operators and isoperimetric inequalities. arXiv:1211.6937 (2012) · Zbl 1329.47026
[4] Duren, P.: Theory of \[H^p\] Hp Spaces. Academic Press, New York (1970) · Zbl 0215.20203
[5] Duren, P., Schuster, A.: Bergman spaces. Mathematical Surveys and Monographs, vol. 100. American Mathematical Society, Providence, RI (2004) · Zbl 1059.30001
[6] Gamelin, T.W., Khavinson, D.: The isoperimetric inequality and rational approximation. Am. Math. Mon. 96(1), 18-30 (1989) · Zbl 0668.30034 · doi:10.2307/2323251
[7] Guadarrama, Z., Khavinson, D.: Approximating \[\bar{z}\] z¯ in Hardy and Bergman norms, Banach Spaces of Analytic Function, Contemporary Mathematics, 454, American Mathematical Society, Providence, pp. 43-61 (2008) · Zbl 1156.30029
[8] Khavinson, D.: A Note on Toeplitz Operators, Banach Spaces (Columbia, Mo., 1984) Lecture Notes in Mathematics, vol. 1166, pp. 89-94. Springer, Berlin (1995) · Zbl 0585.47018
[9] Khavinson, D., Lueking, D.: On an extremal problem in the theory of rational approximation. J. Approx. Theory 50, 127-137 (1987) · Zbl 0612.41024 · doi:10.1016/0021-9045(87)90003-7
[10] Olsen, J-F., Reguera, M.C.: On a sharp estimate for Hankel operators and Putnam’s inequality. arXiv:1305.5193v1 (2013) · Zbl 1372.47040
[11] Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27. Princeton University Press, Princeton (1951) · Zbl 0044.38301
[12] Putnam, C.R.: An inequality for the area of hyponormal spectra. Math. Z 116, 323 (1970) · Zbl 0197.10102 · doi:10.1007/BF01111839
[13] Rudin, W.: Functional Analysis. McGraw-Hill, Boston (1973) · Zbl 0253.46001
[14] Zhu, K.: Operator theory in function spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 139. Marcel Dekker Inc., New York (1990) · Zbl 0706.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.