×

Hilbert space for quantum mechanics on superspace. (English) Zbl 1317.35026

Summary: In superspace a realization of \(\mathfrak{sl}_2\) is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [The authors, and F. Sommen, Proc. Lond. Math. Soc. (3) 103, No. 5, 786–825 (2011; Zbl 1233.33004)]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the \(\mathfrak{sl}_2\)-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.{
©2011 American Institute of Physics}

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
46S60 Functional analysis on superspaces (supermanifolds) or graded spaces
46F05 Topological linear spaces of test functions, distributions and ultradistributions
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B25 Linear symmetric and selfadjoint operators (unbounded)
81S05 Commutation relations and statistics as related to quantum mechanics (general)

Citations:

Zbl 1233.33004

References:

[1] Ben Saïd, S., On the integrability of a representation of \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{sl}(2,\mathbb{R})\end{document} \), J. Funct. Anal., 250, 2, 249 (2007) · Zbl 1133.22012 · doi:10.1016/j.jfa.2007.04.022
[2] Berezin, F., Introduction to Algebra and Analysis with Anticommuting Variables (1983) · Zbl 0527.15020
[3] Böhm, A., Boulder Lectures on Theoretical Physics (1967)
[4] Coulembier, K.; De Bie, H.; Sommen, F., Integration in superspace using distribution theory, J. Phys. A: Math. Theor., 42, 395206 (2009) · Zbl 1187.58011 · doi:10.1088/1751-8113/42/39/395206
[5] Coulembier, K.; De Bie, H.; Sommen, F., Orthogonality of Hermite polynomials in superspace and Mehler type formulae · Zbl 1233.33004
[6] Coulembier, K.; De Bie, H.; Sommen, F., Orthosymplectically invariant functions in superspace, J. Math. Phys., 51, 083504 (2010) · Zbl 1312.46065 · doi:10.1063/1.3462685
[7] Davies, E., Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics 42 (1995) · Zbl 0893.47004
[8] De Bie, H., Fourier transform and related integral transforms in superspace, J. Math. Anal. Appl., 345, 147 (2008) · Zbl 1149.30037 · doi:10.1016/j.jmaa.2008.03.047
[9] De Bie, H., Schrödinger equation with delta potential in superspace, Phys. Lett. A, 372, 4350 (2008) · Zbl 1221.81050 · doi:10.1016/j.physleta.2008.04.005
[10] De Bie, H.; Eelbode, D.; Sommen, F., Spherical harmonics and integration in superspace II, J. Phys. A: Math. Theor., 42, 245204 (2009) · Zbl 1179.30053 · doi:10.1088/1751-8113/42/24/245204
[11] De Bie, H.; Sommen, F., Spherical harmonics and integration in superspace, J. Phys. A: Math. Theor., 40, 7193 (2007) · Zbl 1143.30315 · doi:10.1088/1751-8113/40/26/007
[12] De Bie, H.; Sommen, F., Hermite and Gegenbauer polynomials in superspace using Clifford analysis, J. Phys. A: Math. Theor., 40, 10441 (2007) · Zbl 1152.30052 · doi:10.1088/1751-8113/40/34/004
[13] Delbourgo, R.; Jones, L. M.; White, M., Anharmonic Grassmann oscillator, Phys. Rev. D, 40, 2716 (1989) · doi:10.1103/PhysRevD.40.2716
[14] Delbourgo, R.; Jones, L. M.; White, M., Anharmonic Grassmann oscillator II, Phys. Rev. D, 41, 679 (1990) · doi:10.1103/PhysRevD.41.679
[15] Desrosiers, P.; Lapointe, L.; Mathieu, P., Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model, Nucl. Phys. B, 674, 615 (2003) · Zbl 1097.81519 · doi:10.1016/j.nuclphysb.2003.08.003
[16] Dunne, G. V.; Halliday, I. G., Negative-dimensional oscillators, Nucl. Phys. B, 308, 589 (1988) · doi:10.1016/0550-3213(88)90579-2
[17] Finkelstein, R.; Villasante, M., Grassmann oscillator, Phys. Rev. D, 33, 1666 (1986) · doi:10.1103/PhysRevD.33.1666
[18] Folland, G.; Sitaram, A., The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3, 207 (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[19] Howe, R.; Tan, E.-C., Nonabelian Harmonic Analysis (1992) · Zbl 0768.43001
[20] Nelson, E., Analytic vectors, Ann. Math., 70, 2, 572 (1959) · Zbl 0091.10704 · doi:10.2307/1970331
[21] Reed, M.; Simon, B., Methods of modern mathematical physics I: Functional analysis (1972) · Zbl 0242.46001
[22] Reed, M.; Simon, B., Methods of modern mathematical physics II: Fourier analysis, self-adjointness (1975) · Zbl 0308.47002
[23] Rudolph, O., Super Hilbert spaces, Commun. Math. Phys., 214, 449 (2000) · Zbl 0991.46046 · doi:10.1007/s002200000281
[24] Schwartz, L., Théorie des distributions (1966) · Zbl 0149.09501
[25] Simon, B., Distributions and their Hermite expansions, J. Math. Phys., 12, 140 (1971) · Zbl 0205.12901 · doi:10.1063/1.1665472
[26] Zhang, R. B., Orthosymplectic Lie superalgebras in superspace analogues of quantum Kepler problems, Commun. Math. Phys., 280, 545 (2008) · Zbl 1154.81012 · doi:10.1007/s00220-008-0450-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.