×

Transfer results for the FIP and FCP properties of ring extensions. (English) Zbl 1317.13016

Let \(R\subseteq S\) be an extension of commutative rings with 1 and denote by \([R,S]\) the set of \(R\)-subalgebras of \(S.\) We say the extension \(R\subseteq S\) has the property FIP if \([R,S]\) is finite and that it has FCP if each chain(i.e. a set of elements that are pairwise comparable with respect to inclusion) of \([R,S]\) is finite. The main aim of the paper is to study the transfer of the FIP and FCP properties between an extension \(R\subseteq S\) and the induced extension between the Nagata rings, \(R(X)\subseteq S(X).\) It is shown that if \(R(X)\subseteq S(X)\) has FIP( resp. FCP) then \(R\subseteq S\) has FIP(resp. FCP). The main result is Theorem 3.9 which shows that \(R\subseteq S\) has FCP iff \(R(X)\subseteq S(X)\) has FCP. On the other hand, since in general if \(R\subseteq S\) has FIP it doesn’t follow that \(R(X)\subseteq S(X)\) has FIP, several cases in which this is true are investigated. For example it is shown that if \(R\subseteq S\) is a seminormal integral extension, it has FIP iff \(R(X)\subseteq S(X)\) has FIP.

MSC:

13B02 Extension theory of commutative rings
13B21 Integral dependence in commutative rings; going up, going down
13B25 Polynomials over commutative rings
Full Text: DOI

References:

[1] Anderson D. D., Houston J. Math. 25 pp 603– (1999)
[2] Andrews G. E., The Theory of Partitions (1976) · Zbl 0371.10001
[3] DOI: 10.1016/j.jpaa.2008.03.002 · Zbl 1148.13003 · doi:10.1016/j.jpaa.2008.03.002
[4] Bourbaki N., Algèbre (1981) · Zbl 0455.18010
[5] Bourbaki N., Commutative Algebra (1972)
[6] Dechéne , L. I. ( 1978 ). Adjacent extensions of rings. Ph. D. thesis, University of California at Riverside, Riverside .
[7] DOI: 10.1216/RMJ-2011-41-4-1081 · Zbl 1237.13018 · doi:10.1216/RMJ-2011-41-4-1081
[8] Dobbs D. E., Port. Math. 32 pp 53– (1973)
[9] DOI: 10.1081/AGB-100106770 · Zbl 0995.12003 · doi:10.1081/AGB-100106770
[10] DOI: 10.1081/AGB-200066123 · Zbl 1120.13009 · doi:10.1081/AGB-200066123
[11] DOI: 10.1080/00927870802067989 · Zbl 1149.13015 · doi:10.1080/00927870802067989
[12] Dobbs D. E., Int. Electron. J. Algebra 5 pp 121– (2009)
[13] DOI: 10.1016/j.jalgebra.2012.07.055 · Zbl 1271.13022 · doi:10.1016/j.jalgebra.2012.07.055
[14] Dobbs D. E., JP J. Algebra, Number Theory Appl. 26 pp 103– (2012)
[15] DOI: 10.1016/0021-8693(70)90020-7 · Zbl 0218.13011 · doi:10.1016/0021-8693(70)90020-7
[16] Gilbert , M. S. ( 1996 ). Extensions of commutative rings with linearly ordered intermediate rings, Ph. D. dissertation, Univ. Tennessee, Knoxville .
[17] Gilmer R., Multiplicative Ideal Theory (1972) · Zbl 0248.13001
[18] Grothendieck A., Eléments de Géométrie Algébrique (1971)
[19] DOI: 10.1080/00927879908826495 · Zbl 0972.13008 · doi:10.1080/00927879908826495
[20] Jaballah A., Saitama Math. J. 17 pp 59– (1999)
[21] Lazard D., Bull. Soc. Math. France 97 pp 81– (1969)
[22] DOI: 10.1017/CBO9780511565922 · doi:10.1017/CBO9780511565922
[23] DOI: 10.1080/00927878508823275 · Zbl 0584.13004 · doi:10.1080/00927878508823275
[24] DOI: 10.1080/00927879208824555 · Zbl 0774.13002 · doi:10.1080/00927879208824555
[25] DOI: 10.1007/978-1-4757-3180-4_17 · doi:10.1007/978-1-4757-3180-4_17
[26] DOI: 10.1007/978-0-387-36717-0_22 · doi:10.1007/978-0-387-36717-0_22
[27] DOI: 10.1016/0021-8693(80)90318-X · Zbl 0473.13001 · doi:10.1016/0021-8693(80)90318-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.