×

Optimal \(\mathcal{H}_2\) and \(\mathcal{H}_\infty\) mode-independent filters for generalised Bernoulli jump systems. (English) Zbl 1316.93114

Summary: This paper provides the optimal solution of the filtering design problem for a special class of discrete-time Markov jump linear systems whose transition probability matrix has identical rows. In the two-mode case, this is equivalent to saying that the random variable has a Bernoulli distribution. For that class of dynamic systems we design, with the help of new necessary and sufficient linear matrix inequality conditions, \(\mathcal{H}_2\) and \(\mathcal{H}_\infty\) optimal mode-independent filters with the same order of the plant. As a first proposal available in the literature, for partial information characterized by cluster availability of the mode, we also show that it is possible to design optimal full-order linear filters. If some plant matrices do not vary within the same cluster, we show that the optimal filter exhibits the internal model structure. We complete the results with illustrative examples. A realistic practical application considering sensors connected to a network using a communication protocol such as the ’Token Ring’ is included in order to put in evidence the usefulness of the theoretical results.

MSC:

93E11 Filtering in stochastic control theory
93E20 Optimal stochastic control
93C55 Discrete-time control/observation systems
60J75 Jump processes (MSC2010)

References:

[1] DOI: 10.1080/00207177508922037 · Zbl 0303.93084 · doi:10.1080/00207177508922037
[2] DOI: 10.1006/jmaa.1996.0335 · Zbl 0862.93025 · doi:10.1006/jmaa.1996.0335
[3] DOI: 10.1080/002071797224595 · Zbl 0951.93536 · doi:10.1080/002071797224595
[4] DOI: 10.1007/b138575 · doi:10.1007/b138575
[5] DOI: 10.1080/00207170210139502 · Zbl 1018.93028 · doi:10.1080/00207170210139502
[6] DOI: 10.1109/TAC.2002.800745 · Zbl 1364.93795 · doi:10.1109/TAC.2002.800745
[7] DOI: 10.1007/s00498-004-0142-3 · Zbl 1066.93065 · doi:10.1007/s00498-004-0142-3
[8] de Souza C.E., Proceedings of the 42nd IEEE Conference on Decision and Control 3 pp 2811– (2003)
[9] DOI: 10.1002/rnc.843 · Zbl 1043.93016 · doi:10.1002/rnc.843
[10] DOI: 10.1080/00207170701601710 · Zbl 1152.93503 · doi:10.1080/00207170701601710
[11] DOI: 10.1109/ICCA.2011.6137890 · doi:10.1109/ICCA.2011.6137890
[12] DOI: 10.1109/78.738249 · Zbl 0988.93082 · doi:10.1109/78.738249
[13] DOI: 10.1137/S0363012997327379 · Zbl 0958.93091 · doi:10.1137/S0363012997327379
[14] DOI: 10.1137/080715494 · Zbl 1194.93070 · doi:10.1137/080715494
[15] DOI: 10.1109/TAC.2009.2015553 · Zbl 1367.93643 · doi:10.1109/TAC.2009.2015553
[16] DOI: 10.1016/j.sigpro.2010.04.007 · Zbl 1197.94056 · doi:10.1016/j.sigpro.2010.04.007
[17] DOI: 10.1002/rnc.1610 · Zbl 1213.93190 · doi:10.1002/rnc.1610
[18] DOI: 10.1109/JPROC.2006.887288 · doi:10.1109/JPROC.2006.887288
[19] Ji Y., Control Theory and Advanced Technology 7 pp 247– (1991)
[20] DOI: 10.1115/1.3662552 · doi:10.1115/1.3662552
[21] DOI: 10.1109/TAC.2003.817010 · Zbl 1364.93223 · doi:10.1109/TAC.2003.817010
[22] DOI: 10.1109/TAC.2005.844177 · Zbl 1365.93147 · doi:10.1109/TAC.2005.844177
[23] DOI: 10.1109/TAC.2004.834121 · Zbl 1365.93512 · doi:10.1109/TAC.2004.834121
[24] DOI: 10.1109/TAC.2003.820140 · Zbl 1364.93785 · doi:10.1109/TAC.2003.820140
[25] DOI: 10.1016/j.automatica.2009.02.002 · Zbl 1166.93378 · doi:10.1016/j.automatica.2009.02.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.