×

Computing extremal Teichmüller map of multiply-connected domains via Beltrami holomorphic flow. (English) Zbl 1316.65036

Authors’ abstract: A numerical method for computing the extremal Teichmüller map between multiply-connected domains is presented. Given two multiply-connected domains, there exists a unique Teichmüller map (T-Map) between them minimizing the conformality distortion. The extremal T-Map can be considered as the ‘most conformal’ map between multiply-connected domains. In this paper, we propose an iterative algorithm to compute the extremal T-Map using the Beltrami holomorphic flow (BHF). The BHF procedure iteratively adjusts the initial map based on a sequence of Beltrami coefficients, which are complex-valued functions defined on the source domain. It produces a sequence of quasi-conformal maps, which converges to the T-Map minimizing the conformality distortion. We test our method on synthetic data together with real human face data. Results show that our algorithm computes the extremal T-Map between two multiply-connected domains of the same topology accurately and efficiently.

MSC:

65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
30C62 Quasiconformal mappings in the complex plane
30C75 Extremal problems for conformal and quasiconformal mappings, other methods
30F60 Teichmüller theory for Riemann surfaces
Full Text: DOI

References:

[1] Daripa, P.: On a numerical method for quasiconformal grid generation. J. Comput. Phys. 96, 229-236 (1991) · Zbl 0726.76075 · doi:10.1016/0021-9991(91)90274-O
[2] Daripa, P.: A fast algorithm to solve nonhomogeneous Cauchy-Riemann equations in the complex plane. SIAM J. Sci. Stat. Comput. 13(6), 1418-1432 (1992) · Zbl 0762.65013 · doi:10.1137/0913080
[3] DeLillo, T.K., Kropf, E.H.: Numerical computation of the Schwarz-Christoffel transformation for multiply connected domains. SIAM J. Sci. Comput. 33(3), 3195-3215 (2011) · Zbl 1267.30022 · doi:10.1137/100816912
[4] Fischl, B., Sereno, M., Tootell, R., Dale, A.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272-284 (1999) · doi:10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
[5] Fletcher, A., Markovic, V.: Quasiconformal Maps and Teichmüller Theory. Oxford graduate text of mathematics, 11 (2007) · Zbl 1103.30002
[6] Gardiner, F., Lakic, N.: Quasiconformal Teichmuller Theory. American Mathematics Society (2000) · Zbl 0949.30002
[7] Gu, X.F., Lui, L.M., Yau, S.T.: Convergence of an iterative algorithm for Teichmüller maps via harmonic energy optimization. In: Working Paper (2013) · Zbl 1320.30040
[8] Gu, X., Yau, S.: Computing conformal structures of surfaces. Commun. Inf. Syst. 2(2), 121-146 (2002) · Zbl 1092.14514
[9] Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain, surface mapping. IEEE Trans. Med. Imaging 23(8), 949-958 (2004) · doi:10.1109/TMI.2004.831226
[10] Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Trans. Vis. Comput. Gr. 6, 181-189 (2000) · doi:10.1109/2945.856998
[11] Hale, N., Tee, T.W.: Conformal maps to multiply-slit domains and applications. SIAM J. Sci. Comput. 31(4), 3195-3215 (2009) · Zbl 1195.30011 · doi:10.1137/080738325
[12] Hurdal, M.K., Stephenson, K.: Discrete conformal methods for cortical brain flattening. Neuroimage 45, 86-98 (2009) · doi:10.1016/j.neuroimage.2008.10.045
[13] Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Gr. 14(5), 1030-1043 (2008) · doi:10.1109/TVCG.2008.57
[14] Lehto, O., Virtanen, K.: Quasiconformal Mappings in the Plane. Springer, New York (1973) · Zbl 0267.30016 · doi:10.1007/978-3-642-65513-5
[15] Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: ACM SIGGRAPH Conference Proceedings (2002)
[16] Lui, L.M., Gu, X. F., Yau, S.T.: Convergence of an iterative algorithm for Teichmuller maps via generalized harmonic maps. arvix: 1307.2679v1 (http://arxiv.org/abs/1307.2679) (2013) · Zbl 1320.30040
[17] Lui, L.M., Lam, K.C., Wong, T.W., Gu X.F.: Texture map and video compression using Beltrami representation. SIAM J. Imaging Sci. 6(4), 1880-1902 (2013) · Zbl 1281.65036
[18] Lui, L.M., Lam, K.C., Yau, S.T., Gu, X.F.: Teichmller extremal mapping and its applications to landmark matching registration. arXiv:1211.2569 (http://arxiv.org/abs/1210.8025) · Zbl 1296.65028
[19] Lui, L.M., Wong, T.W., Gu, X.F., Chan, T.F., Yau, S.T.: Compression of surface diffeomorphism using Beltrami coefficient. IEEE Comput. Vis. Pattern Recognit. (CVPR), pp. 2839-2846 (2010) · Zbl 0996.30006
[20] Lui, L.M., Wong, T.W., Gu, X.F., Thompson, P.M., Chan, T.F., Yau, S.T.: Hippocampal shape registration using Beltrami holomorphic flow. Med. Image Comput. Comput. Assist. Interv. (MICCAI), Part II, LNCS 6362, 323-330 (2010)
[21] Lui, L.M., Wong, T.W., Zeng, W., Gu, X.F., Thompson, P.M., Chan, T.F., Yau, S.T.: Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput. 50(3), 557-585 (2012) · Zbl 1244.65096 · doi:10.1007/s10915-011-9506-2
[22] Mastin, C.W., Thompson, J.F.: Discrete quasiconformal mappings. Zeitschrift f \[\dot{\text{ r }}\] r˙ angewandte Mathematik und Physik (ZAMP) 29(1), 1-11 (1978) · Zbl 0377.30018
[23] Mastin, C.W., Thompson, J.F.: Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput. 5(2), 305-310 (1984) · Zbl 0542.65075 · doi:10.1137/0905022
[24] Porter, R.M.: An interpolating polynomial method for numerical conformal mapping. SIAM J. Sci. Comput. 23(3), 1027-1041 (2001) · Zbl 0996.30006 · doi:10.1137/S1064827599355256
[25] Reich, E.: Extremal Quasi-conformal Mappings of the Disk. Handbook of Complex Analysis: Geometric Function Theory, vol 1, Chapter 3. pp. 75-135 (2002) · Zbl 1195.30011
[26] Strebel, K.: On quasiconformal mappings of open riemann surfaces. Comment. Math. Helvetici 53, 301-321 (1978) · Zbl 0421.30017 · doi:10.1007/BF02566081
[27] Wang, Y., Lui, L.M., Gu, X., Hayashi, K.M., Chan, T.F., Toga, A.W., Thompson, P.M., Yau, S.-T.: Brain surface conformal parameterization using riemann surface structure. IEEE Trans. Med. Imaging 26(6), 853-865 (2007) · doi:10.1109/TMI.2007.895464
[28] Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. Comput. Gr. Forum 31(5), 1679-1689 (2012) · doi:10.1111/j.1467-8659.2012.03173.x
[29] Wong, T.W., Zhao, H.: Computation of quasiconformal surface maps using discrete Beltrami flow. UCLA CAM report 12-85 (2013)
[30] Yang, Y.L., Kim, J., Luo, F., Hu, S., Gu, X.F.: Optimal surface parameterization using inverse curvature map. IEEE Trans. Vis. Comput. Gr. 14(5), 1054-1066 (2008) · doi:10.1109/TVCG.2008.54
[31] Zeng, W., Gu, X.: Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR11), Jun 20-25, : Colorado Springs. Colorado, USA (2011)
[32] Zeng, W., Lui, L.M., Shi, L., Wang, D., Chu, W.C., Cheng, J.C., Hua, J., Yau, S.T., Gu, X.F.: Shape analysis of vestibular systems in adolescent idiopathic scoliosis using geodesic spectra. Med. Image Comput. Comput. Assist. Interv. 13(3), 538-546 (2010)
[33] Zeng, W., Lui, L.M., Luo, F., Chan, T.F., Yau, S.T., Gu, X.F.: Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numer. Math. 121(4), 671-703 (2012) · Zbl 1246.30037 · doi:10.1007/s00211-012-0446-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.