×

Proximity frames and regularization. (English) Zbl 1316.06009

By a proximity on a frame \(L\) is usually meant a strong relation \(\vartriangleleft\) on \(L\) [see B. Banaschewski, Math. Nachr. 149, 105-115 (1990; Zbl 0722.54018)]. In [Cah. Topologie Géom. Différ. Catég. 31, No. 4, 305-313 (1990; Zbl 0738.18002)] J. L. Frith coined the name ‘proximal frames’ for the corresponding pairs \((L,\vartriangleleft)\).
In the present paper, the authors introduce a different notion of a proximity in frames, as a common generalization of proximities in de Vries algebras and the way below relation on stably compact frames. In their sense, a proximity in a frame \(L\) is a binary relation \(\prec\) satisfying
(i) \(0\prec 0\) and \(1\prec 1\),
(ii) \(a\prec b\) implies \(a\leq b\),
(iii) \(a\leq b\prec c\leq d\) implies \(a\prec d\),
(iv) \(a,b\prec c\) implies \(a\vee b\prec c\),
(v) \(a\prec b,c\) implies \(a\prec b\wedge c\),
(vi) \(a\prec b\) implies there exists \(c\in L\) with \(a\prec c\prec b\),
(vii) \(a=\bigvee\{b\in L\mid b\prec a\}\).
The pair \((L,\prec)\) is called a proximity frame. Examples of proximity frames are (1) any de Vries algebra, (2) any frame with its partial ordering, (3) any proximal frame, (4) any stably compact frame with its way below relation, (5) any regular frame with the well inside relation, and (6) any completely regular frame with the really inside relation.
The morphisms of the category \(\mathbf{PrFrm}\) of proximity frames are the maps \(h\colon L\to M\) satisfying
(i) \(h(0)=0\) and \(h(1)=1\),
(ii) \(h(a\wedge b)=h(a)\wedge h(b)\),
(iii) \(a\prec b\) and \(c\prec d\) imply \(h(a\vee c)\prec h(b\vee d)\),
(iv) \(h(a)=\bigvee\{h(b)\mid b\prec a\}\).
The usual category of proximal frames is therefore a (non-full) subcategory of the newly category (Frith’s maps are precisely the proximity morphisms that preserve arbitrary joins).
As it is well-known, the category \(\mathbf{KHaus}\) of compact Hausdorff spaces is dually equivalent to the category \(\mathbf{KRFrm}\) of compact regular frames. Furthermore, by de Vries duality, \(\mathbf{KHaus}\) is also dually equivalent to the category \(\mathbf{DeV}\) of de Vries algebras. The main goal of this paper is to lift these dual equivalences to the setting of stably compact spaces. In this setting, the role of de Vries algebras is taken by proximity frames (more specifically, its full subcategory \(\mathbf{RPrFrm}\) of regular proximity frames defined by a functorial process of regularization that extends the Booleanization functor). It is shown that the category \(\mathbf{StKSp}\) of stably compact spaces is dually equivalent to the category \(\mathbf{StKFrm}\) of stably compact frames and that \(\mathbf{StKSp}\) is also dually equivalent to \(\mathbf{RPrFrm}\).
Restricting back to the compact Hausdorff setting, \(\mathbf{PrFrm}\) provides a new category \(\mathbf{StrInc}\) whose objects are frames with strong inclusions. Both \(\mathbf{KRFrm}\) and \(\mathbf{DeV}\) are subcategories of \(\mathbf{StrInc}\) that are equivalent to \(\mathbf{StrInc}\). The restrictions of these categories are considered also in the setting of spectral spaces, Stone spaces, and extremally disconnected spaces, and links to the categories of distributive lattices and Boolean algebras are discussed.

MSC:

06D22 Frames, locales
18B35 Preorders, orders, domains and lattices (viewed as categories)
54E05 Proximity structures and generalizations
54B30 Categorical methods in general topology
18B30 Categories of topological spaces and continuous mappings (MSC2010)
Full Text: DOI

References:

[1] Banaschewski, B.: Compactification of frames. Math. Nachr. 149, 105-115 (1990) · Zbl 0722.54018 · doi:10.1002/mana.19901490107
[2] Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales. I. Houston J. Math. 6(3), 301-312 (1980) · Zbl 0473.54026
[3] Banaschewski, B., Pultr, A.: Samuel compactification and completion of uniform frames. Math. Proc. Camb. Philos. Soc. 108(1), 63-78 (1990) · Zbl 0733.54020 · doi:10.1017/S030500410006895X
[4] Banaschewski, B., Pultr, A.: Booleanization. Cahiers Topologie Géom. Différentielle Catég. 37(1), 41-60 (1996) · Zbl 0848.06010
[5] Bezhanishvili, G.: Stone duality and Gleason covers through de Vries duality. Topology Appl. 157(6), 1064-1080 (2010) · Zbl 1190.54015 · doi:10.1016/j.topol.2010.01.007
[6] Bezhanishvili, G.: De Vries algebras and compact regular frames. Appl. Categ. Struct. 20, 569-582 (2012) · Zbl 1263.06003 · doi:10.1007/s10485-011-9252-5
[7] Bezhanishvili, G., Ghilardi, S.: An algebraic approach to subframe logics. Intuitionistic case. Ann. Pure Appl. Logic 147(1-2), 84-100 (2007) · Zbl 1123.03055 · doi:10.1016/j.apal.2007.04.001
[8] Bezhanishvili, G., Harding, J.: Stable compactifications of frames (2013, in preparation) · Zbl 1315.06010
[9] Bruns, G., Lakser, H.: Injective hulls of semilattices. Can. Math. Bull. 13, 115-118 (1970) · Zbl 0212.03801 · doi:10.4153/CMB-1970-023-6
[10] de Vries, H.: Compact spaces and compactifications. An algebraic approach. PhD thesis, University of Amsterdam (1962) · Zbl 0760.54018
[11] Fletcher, P., Hunsaker, W.: Totally bounded uniformities for frames. Topology Proc. 17, 59-69 (1992) · Zbl 0790.54032
[12] Frith, J.L.: The category of uniform frames. Cahiers Topologie Géom. Différentielle Catég. 31(4), 305-313 (1990) · Zbl 0738.18002
[13] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003) · Zbl 1088.06001 · doi:10.1017/CBO9780511542725
[14] Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5-32 (1972) · Zbl 0246.54028
[15] Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982) · Zbl 0499.54001
[16] Jung, A.; Sünderhauf, P.; Jung, A. (ed.); Sünderhauf, P. (ed.), On the duality of compact vs. open, 214-230 (1996), New York · Zbl 0885.54001
[17] Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998) · Zbl 0906.18001
[18] Picado, J.: Structured frames by Weil entourages. Appl. Categ. Struct. 8(1-2), 351-366 (2000). Papers in honour of Bernhard Banaschewski (Cape Town, 1996) · Zbl 0965.06012
[19] Rasiowa, H., Sikorski, R.: The mathematics of metamathematics, 3rd edn. PWN—Polish Scientific Publishers, Warsaw (1970). Monografie Matematyczne, Tom 41 · Zbl 0122.24311
[20] Schauerte, A.: Biframe compactifications. Comment. Math. Univ. Carolin. 34(3), 567-574 (1993) · Zbl 0787.06012
[21] Smirnov, Y.M.: On proximity spaces. Mat. Sbornik N.S. 31(73), 543-574 (1952) (Russian) · Zbl 0047.41903
[22] Smyth, M.B.: Stable compactification. I. J. Lond. Math. Soc. 45(2), 321-340 (1992) · Zbl 0760.54018 · doi:10.1112/jlms/s2-45.2.321
[23] Stone, M.H.: Algebraic characterizations of special Boolean rings. Fundam. Math. 29, 223-302 (1937) · Zbl 0017.33902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.