×

Superbosonization via Riesz superdistributions. (English) Zbl 1315.58008

The authors give a new conceptual interpretation of the superbosonization identity of P. Littelmann et al. [Commun. Math. Phys. 283, No. 2, 343–395 (2008; Zbl 1156.82008)] that links it to harmonic superanalysis of Lie supergroups and symmetric superspaces, and in particular, to a supergeneralization of the Riesz distributions. The proof is reduced to computing the Gindikin gamma function of a Riemannian symmetric superspace, which is determined explicitly.

MSC:

58C50 Analysis on supermanifolds or graded manifolds
22E30 Analysis on real and complex Lie groups
17B81 Applications of Lie (super)algebras to physics, etc.
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
46S60 Functional analysis on superspaces (supermanifolds) or graded spaces

Citations:

Zbl 1156.82008

References:

[1] A.Alldridge, ‘The Harish-Chandra isomorphism for reductive symmetric superpairs’, Transform. Groups17 (2012), 889-919. · Zbl 1293.17012
[2] A.Alldridge and J.Hilgert, ‘Invariant Berezin integration on homogeneous supermanifolds’, J. Lie Theory20 (2010), 65-91. · Zbl 1192.58004
[3] A.Alldridge, J.Hilgert and W.Palzer, ‘Berezin integration on non-compact supermanifolds’, J. Geom. Phys.62 (2012), 427-448. · Zbl 1243.58006
[4] A.Alldridge, J.Hilgert and T.Wurzbacher, ‘Singular superspaces’, Math. Z. (2014), under revision. · Zbl 1300.32004
[5] A.Altland and M. R.Zirnbauer, ‘Nonstandard symmetry classes in mesoscopic normal – superconducting hybrid structures’, Phys. Rev. B55 (1997), 1142-1161.
[6] G. E.Bredon, Sheaf Theory, 2nd Edn, (Springer-Verlag, Berlin, New York, 1997). · Zbl 0874.55001
[7] C.Carmeli, L.Caston and R.Fioresi, Mathematical Foundations of Supersymmetry, (European Mathematical Society, Zurich, 2011). · Zbl 1226.58003
[8] P.Deligne and J. W.Morgan, ‘Notes on supersymmetry (following Joseph Bernstein)’, in:Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) (Amer. Math. Soc., Providence, RI, 1999), 41-97. · Zbl 1170.58302
[9] JDieudonné, Treatise on Analysis. Vol. VI, (Academic Press, New York, 1978). · Zbl 0435.43001
[10] K.Efetov, Supersymmetry in Disorder and Chaos, (Cambridge University Press, Cambridge, 1997). · Zbl 0990.82501
[11] K.Efetov, G.Schwiete and K.Takahashi, ‘Bosonization for disordered and chaotic systems’, Phys. Rev. Lett.92 (2004), 026807.
[12] L.Ehrenpreis, ‘Analytic functions and the Fourier transform of distributions. I’, Ann. of Math. (2)63 (1956), 129-159. · Zbl 0139.08004
[13] J.Faraut and A.Korányi, ‘Function spaces and reproducing kernels on bounded symmetric domains’, J. Funct. Anal.88 (1990), 64-89. · Zbl 0718.32026
[14] J.Faraut and A.Korányi, Analysis on Symmetric Cones, (Oxford University Press, Oxford, 1994). · Zbl 0841.43002
[15] D. S.Freed and G. W.Moore, ‘Twisted equivariant matter’, Ann. Henri Poincaré (2013), 1-97. · Zbl 1286.81109
[16] Y. V.Fyodorov, ‘Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation’, Nuclear Phys. B621 (2002), 643-674. · Zbl 1024.82013
[17] I. M.Gel’fand and G. E.Shilov, Generalized Functions, Vol. 1, (Academic Press, New York, 1964). · Zbl 0115.33101
[18] I. M.Gel’fand and G. E.Shilov, Generalized Functions, Vol. 2, (Academic Press, New York, 1977).
[19] T.Guhr, ‘Arbitrary unitarily invariant random matrix ensembles and supersymmetry’, J. Phys. A39 (2006), 13191-13223. · Zbl 1206.82051
[20] V. W.Guillemin and S.Sternberg, Supersymmetry and Equivariant De Rham Theory (Springer-Verlag, Berlin, New York, 1999). · Zbl 0934.55007
[21] G.Hackenbroich and H.Weidenmüller, ‘Universality of random-matrix results for non-gaussian ensembles’, Phys. Rev. Lett.74 (1995), 4118-4121.
[22] P.Heinzner, A.Huckleberry and M. R.Zirnbauer, ‘Symmetry classes of disordered fermions’, Comm. Math. Phys.257 (2005), 725-771. · Zbl 1092.82020
[23] J.Hilgert and K.-H.Neeb, ‘Vector valued Riesz distributions on Euclidian Jordan algebras’, J. Geom. Anal.11 (2001), 43-75. · Zbl 0989.22021
[24] A. E.Ingham, ‘An integral which occurs in statistics’, Proc. Cambridge Philos. Soc.29 (1933), 271-276. · Zbl 0007.00701
[25] T.Ishihara, ‘On generalized Laplace transforms’, Proc. Japan Acad.37 (1961), 556-561. · Zbl 0154.13801
[26] B.Iversen, Cohomology of Sheaves, (Springer-Verlag, Berlin, New York, 1986). · Zbl 1272.55001
[27] G.Kainz, A.Kriegl and P.Michor, ‘<![CDATA \([C^\infty ]]\)>-algebras from the functional analytic viewpoint’, J. Pure Appl. Algebra46 (1987), 89-107. · Zbl 0621.46046
[28] M.Kieburg, J.Grönqvist and T.Guhr, ‘Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary – symplectic case’, J. Phys. A42 (2009), 275205, 31. · Zbl 1167.81020
[29] M.Kieburg, H.-J.Sommers and T.Guhr, ‘A comparison of the superbosonization formula and the generalized Hubbard-Stratonovich transformation’, J. Phys. A.42 (2009), 275206, 23. · Zbl 1167.81021
[30] N.Lehmann, SaherD., V. V.Sokolov and H.-J.Sommers, ‘Chaotic scattering—the supersymmetry method for large number of channels’, Nucl. Phys. A582 (1995), 223-256.
[31] D. A.Leĭtes, ‘Introduction to the theory of supermanifolds’, Uspekhi Mat. Nauk35 (1980), 3-57, 255. · Zbl 0439.58007
[32] P.Littelmann, H.-J.Sommers and M. R.Zirnbauer, ‘Superbosonization of invariant random matrix ensembles’, Comm. Math. Phys.283 (2008), 343-395. · Zbl 1156.82008
[33] S.MacLane, Categories for the Working Mathematician, 2nd Edn, (Springer-Verlag, Berlin, New York, 1998). · Zbl 0705.18001
[34] Y. I.Manin, Gauge Field Theory and Complex Geometry, (Springer-Verlag, Berlin, New York, 1988). · Zbl 0641.53001
[35] R.Meise and D.Vogt, Introduction to Functional Analysis, (Oxford University Press, Oxford, 1997). · Zbl 0924.46002
[36] B.Mitiagin, S.Rolewicz and W.Żelazko, ‘Entire functions in <![CDATA \([B_0]]\)>-algebras’, Studia Math.21 (1961/2), 291-306. · Zbl 0111.31001
[37] P.-E.Paradan, ‘Symmetric spaces of the non-compact type: Lie groups’, in:Géométries à courbure négative ou nulle, groupes discrets et rigidités, Séminaire Congrésvol. 18 (Soc. Math. France, Paris, 2009), 39-76. · Zbl 1197.22002
[38] H. H.Schaefer, Topological Vector Spaces, (Springer-Verlag, Berlin, New York, 1971). · Zbl 0212.14001
[39] L.Schäfer and F.Wegner, ‘Disordered system with <![CDATA \([n]]\)> orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes’, Z. Phys. B38 (1980), 113-126.
[40] L.Schwartz, Théorie des distributions. Tome II. Hermann, Paris 1951. · Zbl 0042.11405
[41] L.Schwartz, ‘Transformation de Laplace des distributions’, Medd. Lunds Univ. Mat. Sem.1952 (1952), 196-206. Tôme Supplémentaire. · Zbl 0047.34903
[42] C. L.Siegel, ‘Über die analytische Theorie der quadratischen Formen’, Ann. of Math. (2)36 (1935), 527-606. · JFM 61.0140.01
[43] H.-J.Sommers, ‘Superbosonization’, Acta Phys. Polon. B38 (2007), 4105-4110. · Zbl 1371.82080
[44] M.Spivak, A Comprehensive Introduction to Differential Geometry, Vol. I, (Publish or Perish Inc., Houston, TX, 1979). · Zbl 0439.53002
[45] F.Trèves, Topological Vector Spaces, Distributions, and Kernels, (Academic Press, New York, London, 1967). · Zbl 0171.10402
[46] M.Vergne and H.Rossi, ‘Analytic continuation of the holomorphic discrete series of a semi-simple Lie group’, Acta Math.136 (1976), 1-59. · Zbl 0356.32020
[47] M. R.Zirnbauer, ‘Fourier analysis on a hyperbolic supermanifold with constant curvature’, Comm. Math. Phys.141 (1991), 503-522. · Zbl 0746.58014
[48] M. R.Zirnbauer, ‘Super Fourier analysis and localization in disordered wires’, Phys. Rev. Lett.69 (1992), 1584-1587. · Zbl 0968.82529
[49] M. R.Zirnbauer, ‘Riemannian symmetric superspaces and their origin in random-matrix theory’, J. Math. Phys.37 (1996), 4986-5018. · Zbl 0871.58005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.