×

Rings and modules characterized by opposites of injectivity. (English) Zbl 1315.16011

A module \(M\) is said to be \(N\)-subinjective if every homomorphism from \(N\) to \(M\) can be extended to a homomorphism from \(E(N)\) to \(M\). The authors of this paper call a module \(M\) to be a test for injectivity by subinjectivity (t.i.b.s., for short) if the only modules which are \(M\)-subinjective are the injective ones. It is shown that a t.i.b.s. module exists over every ring. This paper studies structure of rings over which each module is injective or a t.i.b.s. It is also shown that a ring \(R\) is right hereditary and right Noetherian if and only if \(R\) as a right \(R\)-module is a t.i.b.s.

MSC:

16D80 Other classes of modules and ideals in associative algebras
16D50 Injective modules, self-injective associative rings
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
Full Text: DOI

References:

[1] Alahmadi, A. N.; Alkan, M.; López-Permouth, S. R., Poor modules: The opposite of injectivity, Glasg. Math. J., 52A, 7-17 (2010) · Zbl 1228.16004
[2] Alizade, R.; Bilhan, G.; Smith, P. F., Modules whose maximal submodules have supplements, Comm. Algebra, 29, 6, 2389-2405 (2001) · Zbl 0989.16001
[3] Aydoǧdu, P.; López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra, 338, 207-219 (2011) · Zbl 1246.16005
[4] Baba, Y.; Oshiro, K., Classical Artinian Rings and Related Topics (2009), World Scientific: World Scientific Singapore · Zbl 1204.16001
[5] Damiano, R. F., A right PCI-ring is right Noetherian, Proc. Amer. Math. Soc., 77, 1, 11-14 (1979) · Zbl 0425.16022
[6] Dung, N. V.; Huynh, D. V.; Smith, P. F.; Wisbauer, R., Extending Modules, Pitman Res. Notes Math. Ser., vol. 313 (1994) · Zbl 0841.16001
[7] Er, N.; López-Permouth, S.; Sökmez, N., Rings whose modules have maximal or minimal injectivity domains, J. Algebra, 330, 404-417 (2011) · Zbl 1227.16004
[8] Faith, C., Rings and Things and a Finite Array of Twentieth Century Associative Algebra, Math. Surveys Monogr., vol. 65 (2004), Amer. Math. Soc.
[9] Faith, C., When are proper cyclics injective?, Pacific J. Math., 45, 1, 97-112 (1973) · Zbl 0258.16024
[10] Goodearl, K., Singular Torsion and the Splitting Properties, Mem. Amer. Math. Soc., vol. 124 (1972) · Zbl 0242.16018
[11] Lam, T. Y., Lectures on Modules and Rings (1999), Springer: Springer Berlin, Heidelberg, New York · Zbl 0911.16001
[12] Mohamed, S. H.; Müller, B. J., Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser., vol. 147 (1990), Cambridge University Press · Zbl 0701.16001
[13] Osofsky, B., Rings all of whose finitely generated modules are injective, Pacific J. Math., 14, 645-650 (1964) · Zbl 0145.26601
[14] Trlifaj, J., Whitehead test modules, Trans. Amer. Math. Soc., 348, 4, 1521-1554 (1996) · Zbl 0865.16006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.